В системах подвижной спутниковой связи (СПСС) требуется обслуживать постоянно увеличивающееся число абонентов при относительно узком частотном диапазоне, выделенном для спутниковой связи. Для этого используются различные способы обеспечения множественного доступа (МД) в сочетании с эффективной по используемой частотной полосе модуляцией.
В данной статье рассматривается обеспечение множественного доступа к спутниковому ретранслятору с зональным обслуживанием. Данный способ МД представляет собой комбинирование традиционных сигнальных (частотно-временных) методов разделения каналов с пространственным разнесением парциальных зон, которые образуются лучами многолучевых бортовых антенн спутникового ретранслятора. Другими словами, зональное обслуживание – это множественный доступ c частотно-пространственным разделением канала. При этом для увеличения количества обслуживаемых пользователей появляется возможность повторного использования частот в разных каналах связи, это достигается пространственным разнесением каналов, которым назначена одна и та же частотная полоса (частотный слот) [1, 2].
Для наиболее эффективной реализации системы спутниковой связи (ССС) с зональным обслуживанием целесообразно применение на спутниках антенн с узкими лучами. Применение таких антенн не только улучшает пространственную избирательность, но и дает энергетических выигрыш, например, возможность уменьшить мощность передатчиков спутника и земных станций. [3] Наиболее перспективным способом реализации многолучевой антенны с узкими лучами, является применение технологий цифрового диаграммообразования (ЦДО) с применением цифровых антенных решеток (ЦАР). Реализация ЦАР основана на использовании передовых алгоритмов цифровой обработки сигналов. Ключевая особенность ЦАР – цифровое формирование лучей диаграммы направленности антенны. Это позволяет динамически оптимизировать обслуживаемую зону покрытия, оперативно перенацеливая цифровые приемопередающие лучи в зависимости от территориального распределения абонентов (рис. 1). [4]
Цифровая антенная решетка — это антенная система, представляющая собой совокупность аналого-цифровых каналов с общим фазовым центром, в которой формирование диаграммы направленности осуществляется в цифровом виде, без использования фазовращателей.
Рис 1. ЦАР позволяет адаптивно перенацеливать лучи на мобильных абонентов
Рис. 2. Адаптивное формирование нулей ДН ЦАР в направлениях помех
Дополнительный энергетический выигрыш появляется за счет использования техники активного подавления помех для формирования провалов диаграммы направленности в направлении других излучателей, работающих на той же частоте
(рис. 2). Подходящий луч ДН направляется на основании информации, получаемой от терминала, а так же угла ее прихода (Direction of Arrival, DOA). При этом более узкие лучи требуют более точной оценки угла прихода сигнала (DOA), в противном случае это отразится на помехозащищенности системы. [4-6]
На рис. 3 приведен пример построения системы подвижной спутниковой связи (СПСС). Для связи геостационарного спутникового ретранслятора (СР) с абонентскими терминалам используется адаптивная ЦАР, которая работает в L диапазоне частот и обеспечивает индивидуальное пользовательское покрытие. Для связи СР с центральной земной станцией (ЦЗС) используется традиционная параболическая антенна Ku диапазона. Электрически настраиваемый антенный массив необходим ретранслятору для пространственного разнесения мобильных радиосигналов, которым присвоен один и тот же частотный слот . На (рис. 3) показано, как антенна должна адаптироваться к использованию абонентскими терминалами А1 и А4 одной частотной полосы (одного частотного слота). Для установки соединения с А1, главный лепесток диаграммы направленности должен точно нацеливаться (и, при необходимости, сопровождаться) на мгновенное местоположение терминала А1. Одновременно с этим, в диаграмме направленности антенны должны формироваться провалы (нули) в направлении всех остальных абонентских терминалов, использующих тот же частотный слот (на рисунке терминал А4). [7]
При формировании эффективной зоны покрытия с помощью ЦАР необходимо учитывать такие факторы, как ширина основного лепестка диаграммы направленности,
Рис. 3. Система подвижной спутниковой связи
уровни боковых лепестков, которые зависят от количества антенных излучателей и расстояния между ними. В дальнейшем планируется провести исследование оптимального частотно-территориального плана СПСС с зональным обслуживанием с учетом данных факторов, а так же с учетом активности абонентов. При этом для составления частотно-территориального плана будет использован метод координационных колец [8].
Литература
1. Аболиц А.И. Системы спутниковой связи. Основы структурно-параметрической теории и эффективность. – М.: ИТИС, 2004. – 426с.: ил.
2. Спутниковые сети связи: Учеб.пособие / В.Е. Камнев, В.В. Черкасов, Г.В. Чечин. – М.: «Альпина Паблишер», 2004. – 536 с.: ил.
3. Кантор Л.Я. Расцвет и кризис спутниковой связи // Электросвязь. 2007. №7. С. 19-23.
4. Слюсар В.И. SMART-антенны пошли в серию // Электроника: НТБ. 2004. №2. C. 62-65.
5. Слюсар В.И. Цифровое формирование луча в системах связи: будущее рождается сегодня // Электроника: НТБ. 2001. №1. С. 6-12.
6. S. Anderson, B. Hagerman, H. Dam, U. Forssén, J. Karlsson, F. Kronestedt, S. Mazur, and K. J. Molnar, "Adaptive antennas for GSM and TDMA systems," IEEE Personal Communications, vol. 6, pp. 74 - 86, June 1999.
7. T. Gebauer and H. G. Göckler, "Channel-Individual Adaptive Beamforming for Mobile Satellite Communications," IEEE Journal Selected Areas in Comm., vol. 13, pp. 439 - 448, February 1995.
8. Методы частотно-территориального планирования в сетях радиосвязи: монография / В.И. Носов, Н.В. Носкова; Сиб. гос. ун-т телекоммуникаций и информатики. – Новосибирск : 2006. - 162с.