В статье рассматриваются особенности распространения радиоволн на космических линиях связи. Представлены результаты расчета скорости вращения вектора напряженности электрического поля в зависимости от частоты сигнала. Приведены результаты расчета возможного доплеровского сдвига частоты при связи с космическим аппаратом «Вояджер-1», запущенным в сентябре 1977 года.
Ключевые слова: эффект Доплера, доплеровский сдвиг, космические аппараты КА, ослабление сигнала, линия связи, «Вояджер-1».
С появлением первого радио, изобретенного А. С. Поповым в 1895 году, трудно даже было представить человечеству, как сильно это повлияет на жизнь человечества. Именно благодаря радиосвязи улучшилась система оповещения народа о чрезвычайных ситуациях, а с первых дней Великой Отечественной войны она стала важнейшим средством оперативного управления войсками и информирования населения огромной страны. С помощью радиосвязи в недавнее время также появилась возможность дистанционного управления устройствами, роботами, машинами и т. д. Возможности использования свободно распространяющейся электромагнитной волны в современном мире безграничны.
В последние десятилетия наблюдается бурное стремление изучить космическое пространство с помощью дистанционно управляемых космических кораблей. В связи с этим все чаще теряются в межзвездном пространстве космические аппараты КА (зонды), предназначенные для изучения комет, планет и других космических объектов. Все эти потери губительно сказываются на состоянии государства. Чтобы минимизировать частые потери связи при дистанционном управлении объектов решается целый круг научно-технических задач. Многие из них связаны с особенностями распространения радиоволн в околоземном пространстве, межзвездном газе и атмосфере других планет солнечной системы.
Ослабление сигнала в Земной атмосфере и межзвездном газе
Общие потери сигнала на любой радиолинии складываются из основных и дополнительных потерь. Основные потери определяются ослаблением в свободном пространстве из-за расхождения лучей по причине сферического фронта волны. Дополнительные потери обусловлены неоднородностью среды, результатом поглощения, изменения первоначальной поляризации волны под действием магнитного поля и т. д. На рис.1 показано преломление радиоволны при излучении в космическое пространство на границе раздела двух сред с различными диэлектрическими проницаемостями .
Рис. 1. Преломление радиоволны за счет перехода из границы раздела сред с различными диэлектрическими проницаемостями
Радиоволны различных диапазонов по-разному проходят через земную атмосферу. Для космической связи оптимален диапазон от 1,5 до 30 сантиметров (ГГц). За пределами этого окна радиосигнал заметно ослабляется в атмосфере или даже может от нее отразиться. На более коротких волнах потери энергии растут за счет поглощения молекулами воды и кислорода в тропосфере, а на более длинных волнах прохождению сигнала все сильнее мешает ионосфера, которая для волн длиннее 10–30 метров становится непреодолимой преградой. Поглощение радиоволн также вызывается дождем и туманом, но, конечно, не в такой мере, как в оптическом диапазоне [2]. Также необходимо учесть, что чем меньше угол вхождения радиоволны в ионосферу, тем малая вероятность обратного отражения от слоя ионосферы (этот эффект уменьшается с ростом частоты).
Как известно, при наличии постоянного магнитного поля Земли, во время распространения в ионосфере волна расщепляется на две волны — обыкновенная и необыкновенная. Они имеют отличительные друг от друга фазовые фронты, приводящие к повороту плоскости поляризации суммарной волны. В результате этого сигнал, принятый линейно поляризованной антенной испытывает поляризационные замирания. В табл. 1 приведены результаты расчета скорости вращения вектора напряженности электрического поля в зависимости от частоты сигнала [1].
Таблица 1
f, МГц |
100 |
200 |
500 |
800 |
1000 |
2000 |
3000 |
5000 |
, град/с |
1,7 |
0,43 |
|
|
|
|
|
|
Доплеровский эффект на космической линии связи
Одной из особенностей связи с движущимися объектами (с космическим аппаратом в том числе) является то, что принятые сигналы отличаются по частоте от передаваемых. Это явление получило название «эффект Доплера». Суть его в том, что при передаче сообщения длительностью оно принимается за время . При удалении источника излучения от наблюдателя частота сигнала уменьшается, а при приближении к наблюдателю — увеличивается.
Таким образом, при достаточно больших скоростях движущегося источника излучения относительно приемника возникают доплеровский сдвиг и деформация спектра сигнала. Для компенсации влияния доплеровского эффекта в приемных устройствах применяют системы автоматической подстройки частоты местного гетеродина или в соответствии с орбитой ИСЗ применяют соответствующие поправки в несущую частоту передатчика. К сожалению, ни один из этих методов не способен на высоких скоростях движения небесных тел друг относительно друга устранить искажения спектра сигнала.
В 1977 году был запущен в космическое пространство автоматический зонд «Вояджер-1», исследующий солнечную систему и её окрестности. В данный момент он находится на границе Солнечной системы и вскоре ее покинет. Через несколько лет, по данным от ученых NASA, сигнал станет столь слабым, что принять его уже будет невозможно. На 10 января 2012 года текущая скорость космического путешественника относительно Солнца — 17,0 км/с [3]. Частоты связи, на которых производится передача данных — 2295 и 8418 МГц [4]. Определим возможный сдвиг частоты при связи с этим кораблем.
МГц;
МГц;
В заключение можно отметить несколько важных аспектов. Во-первых, при правильном выборе рабочих частот на космических радиолиниях ослабление сигнала определяется в основном ослаблением в свободном пространстве. Во-вторых, доплеровский эффект пропорционален частоте сигнала и проявляется все значительней с увеличением скорости движущегося объекта относительно наблюдателя.
Литература:
- Л. К. Андрусевич, А. А. Ищук, К. А. Лайко, Антенны и распространение радиоволн: учебник для вузов, Новосибирск: Изд-во НГТУ, 2006.-396 с.
- Электронный ресурс, сайт: http://www.vokrugsveta.ru/vs/article/5956/, дата обращения: 22.01.2016г.
- Электронный ресурс, сайт: https://ru.wikipedia.org/wiki/ %D0 %92 %D0 %BE %D1 %8F %D0 %B4 %D0 %B6 %D0 %B5 %D1 %80–1, дата обращения: 23.01.2016г.
- Электронный ресурс, сайт: http://informatik-m.ru/2011–06–20–18–25–05/dalnjaja-kosmicheskaja-svjaz-vojadzher-1.html, дата обращения: 23.01.2016г.
- М. Ю. Застела, «Основы радиоэлектроники и связи», Казань: ЗАО «Новое знание», 2009.-340 с.