Изучена изомеризация н-октана на Pt-цеолитных катализаторах с редкоземельными переходными элементами. Установлена высокая активность Pt-цеолитных катализаторов, содержащих два поливалентных катиона, и показано, что редкоземельные и переходные элементы влияют на активность и селективность Pt-цеолитных катализаторов путём регулирования количества и силы кислотных центров.
Ключевые слова: изомеризация, н-гептан, Pt-содержащие катализаторы
Природа поливалентного катиона в значительной степени определяет активность металлоцеолитных катализаторов в реакциях превращения углеводородов, протекающих по карбоний-ионному механизму [1–3]. В литературе имеются многочисленные работы по исследованию каталитических свойств металлоцеолитных катализаторов поливалентными катионами в реакциях изомеризации н-парафиновых углеводородов С5-С6 [4–6]. Однако металлцеолитные катализаторы, содержащие редкоземельные металлы (РЗЭ) и переходные элементы в реакции изомеризации н-октана, в этом аспекте изучены недостаточно.
В настоящем сообщении приводятся данные о влиянии природы катионов РЗЭ и переходных элементов на каталитические и кислотные свойства Pt-цеолитного катализатора (Pt/CaY) в реакции изомеризации н-октана.
Экспериментальная часть
В качестве катализаторов использовали Са-, РЗЭ-Са-, Ni-Ca, Cr-Ca и Co-Ca- цеолита Y с мольным отношением SiO2/Al2O3, равным 5, содержащие 0,5 % платины. Приготовленные катализаторы содержали 25 мас. % Al2O3 в качестве связующего компонента. Методика приготовления катализаторов была аналогично описана в [4]. Изомеризацию н-октана проводили на проточной установке с загрузкой 5 см3 катализатора при температуре 533–573К, давлении 0,1МПа, мольном отношении Н2:С8Н18, равном 5, и объёмной скорости по октану 1ч-1. Анализ продуктов реакции осуществляли на хроматографе марки Аgilent 7890A c капиллярной колонкой длиной 100м, заполненной ДВ-Petro. Определение спектра кислотных центров на поверхности катализаторов проводили термодесорбцией аммиака [7]. По этой методике были определены количества (мкмоль·г-1), соответствующие принятой нами условной классификации концентраций различных по силе кислотных центров: средних (573К), сильных (673К) и очень сильных (773К). Данные о кислотности Pt-цеолитных катализаторов приведены в табл.2. ИК-спектры регистрировали спектрометром «Varian 3600 FT/IR» в области 3000–4000 см-1 [8].
Как видно из данных табл.1, при температуре 533К Са-форма цеолита обладает низкой активностью в реакции изомеризации н-октана.
Повышение температуры реакции до 573К существенно увеличивает выход изооктанов с 20,1 до 39,2 мас. %. Однако при этом происходит снижение селективности катализатора с 89,6 до 77,0 %. Замещение 5 % катионов кальция на катионы Cd+3 и Но+3 способствует резкому увеличению активности и селективности катализатора Pt/CaY. Следует отметить, что наиболее сильное промотирующее действие катионов РЗЭ+3 сказывается при низкой температуре реакции. Например, при 553К выход изооктанов возрастает до 53,2–53,6 мас. %. Повышение температуры реакции до 573К существенно снижает селективность изомеризации с 86,6–87,1 % до 79,8–81,1 %.
Из табл. 1 видно, что подобно катиону РЗЭ+3, введение катионов Cr+3, Co+2, Ni+2 в составе катализатора Pt/CaY увеличивает его активность и снижает на 10–20К температуру проведения реакции изомеризации н-октана. Причём катализатор, модифицированный катионами Cd 3+ и Но+3, проявляет более высокую активность, чем катализаторы, модифицированные катионами кобальта, хрома и никеля. Максимальный выход изооктанов на катализаторе Pt /РЗЭ+3CaY достигается при 553K и составляет 53,2–53,6 мас. % при селективности 86,6–87,1 %. Катализатор Pt/CoCaY также проявляет высокую селективность в реакции изомеризации н-октана. На этом катализаторе при 553К выход изооктанов составляет 51,2 мас. % при селективности 89,8 %. Катализаторы Pt/CrCaY и Pt/NiCaY проявляют существенно низкую активность и селективность.
Таблица 1
Влияние природы катионов на каталитические свойства катализатора 0,5% Pt/CaY в реакции изомеризации н-октана (v=1,0 час-1, Р=0,1МПа, Н2/С8Н18=5 мольное)
№образца |
Катализатор |
Т, К |
Выход продуктов реакции, мас.% |
Селективность,% |
||
C2-C6 |
изо-С8Н18 |
н-С8Н18 |
||||
|
Pt/0,86 CaY |
533 553 573 |
2,3 5,5 12,7 |
20,1 34,5 39,2 |
77,6 60,0 48,1 |
89,6 85,5 79,0 |
|
Pt/0,05Gd0,81CaY |
533 553 573 |
4,0 8,2 13,3 |
38,8 53,2 52,4 |
57,2 38,6 34,3 |
90,6 86,6 79,8 |
|
Pt/0,05Ho0,81CaY |
533 553 573 |
4,3 7,9 19,1 |
40,1 53,6 52,5 |
55,6 38,5 39,4 |
90,3 87,1 81,2 |
|
Pt/0,05Cr0,81CaY |
533 553 573 |
4,9 11,2 18,4 |
36,3 47,8 46,5 |
58,8 41,0 35,1 |
88,1 81,0 71,6 |
|
Pt/0,05Co0,81CaY |
533 553 573 |
3,1 5,8 11,2 |
34,1 51,2 50,9 |
62,8 43,0 37,4 |
91,6 89,8 89,0 |
|
Pt/0,05Ni0,81CaY |
533 553 573 |
4,6 10,3 17,2 |
35,4 45,5 44,7 |
60,0 44,2 38,1 |
88,5 81,5 72,2 |
На этих катализаторах при 553K выход изооктанов составляет 47,8 и 45,5 мас. % при селективности 81,0 и 81,5 % соответственно. Повышение температуры реакции до 573К снижает селективность изомеризации до 71,6–72,2 %.Сопоставление результатов, приведённых в табл.1 показывает, что катионы РЗЭ+3 в составе катализатора Pt/CaY обладают более высоким промотирующим и стабилизирующим действием, чем катионы Cr+3 и Ni+2.
Очевидно, что промотирующее влияние поливалентных катионов на активность катализатора Pt/CaY вызвано перераспределением и изменением соотношения бренстедовских и льюисовских кислотных центров, что подтверждено методами ТПД аммиака и ИК-спектроскопией.
Таблица 2
Спектры кислотности модифицированных Pt- цеолитных катализаторов.
№образца |
573К |
673К |
773К |
Общая кислотность |
мкмольг-1 |
||||
|
80 |
40 |
- |
120 |
|
175 |
65 |
25 |
265 |
|
180 |
60 |
20 |
260 |
|
120 |
90 |
35 |
245 |
|
150 |
50 |
15 |
215 |
|
130 |
80 |
30 |
240 |
Из табл. 2 видно, что при термодесорбции аммиака с образца Pt/CaY при 773К не появляется пик соответствующий десорбции аммиака, что свидетельствует об отсутствии очень сильных кислотных центров на этом образце. Природа поливалентного катиона, введённого в состав Pt/CaY, существенно влияет на его спектр кислотности. Замещение 5 % катионов Са+2 на катионы Cr+3, Ni+2 не только увеличивает количество средних (с 80 до 120–130), но существенно увеличивает также количество сильных (40 до 80–90 мкмоль·г-1) и очень сильных (30–35 мкмоль·г-1) кислотных центров. На образцах, содержащих комбинации катионов Са+2 и РЗЭ+3, доля сильных и очень сильных кислотных центров незначительна и составляет всего 60–65 и 20–25 мкмоль·г-1. На этих катализаторах преобладают в основном средние кислотные центры, концентрации которых составляет 175–180 мкмоль·г-1. Очевидно, на этой причине Pt-цеолитные катализаторы, модифицированные катионами РЗЭ+3 и Са+2, проявляют более активность и селективность в изомеризации н-октана.
Сопоставление спектра кислотности с активностью Pt-цеолитных катализаторов, модифицированных поливалентными катионами, показывает, что в реакции изомеризации н-октана основную роль играют средние кислотные центры.
Как уже отмечалось выше, изменение катионного состава цеолитного катализатора существенным образом сказывается на его изомеризующей активности. В свою очередь динамика формирования ИК-спектра в области валентных колебаний гидроксильных групп также определяется природой ионообменного катиона.
Рис. 1. ИК-спектры в области валентных колебаний гидроксильных групп Pt-содержащих катализаторов: 1- CaY, 2 CoCaY, 3- NiCaY, 4- CrCaY, 5- HoCaY
В ИК-спектре кальциевой формы Pt-цеолитного катализатора наблюдаются полосы поглощения (п.п.) с очень слабой интенсивностью. Введение в кальциевую форму поливалентных катионов приводит к существенному усилению интенсивностей п. п. при 3550 и 3650 см-1. Однако замещение 5 % катионов Са+2 на поливалентные катионы приводит к появлению п. п. 3610 см-1. Появление п. п.3610 см-1 в этих образцах может быть отнесено к возникновению дополнительных гидроксильных групп бренстедовского типа [8,9]. Природа поливалентного катиона влияет также на интенсивность п. п.3650 см-1. По сравнению с катионами переходных элементов при введении катионов РЗЭ+3 в состав катализатора Pt/CaY наблюдается более существенное уменьшение интенсивности п. п. при 3650 см-1 и рост интесивности при п. п. 3550 см-1. Модифицирование катализатора Pt/CaY поливалентными катионами приводит к увеличению концентрации льюисовских кислотных центров и тем самым изменяет соотношение льюисовских (L) и бренстедовских (В) кислотных центров.
Следовательно, высокая изомеризующая активность Pt-цеолитного катализатора, модифицированного катионами РЗЭ+3 и Са+2, обусловлена оптимальным соотношением концентрации (L) и (В) центров. Критерием высокой изомеризующей активности и селективности является условие синергизма входящих в состав активного центра кислотных протонных и апротонных центров. Основной вклад в кислотность вносят поливалентные катионы, которые будучи сильными апротонными центрами, обеспечивают за счёт индукционных эффектов высокую подвижность протонов бренстедовского гидроксила.
Литература:
- Харламов В. В. Гидрирование и изомеризация углеводородов на цеолитных катализаторах // Нефтехимия ˗̶1998. ˗̶ т.38. ˗̶ № 6. ˗̶ с. 439–457.
- Vasilyev A. N., Galich P. N. Izomerization of n-paraffinic hydrocarbone over zeolitic catalysts // Chemistry and technology of fuels and oils. ˗̶ 1996. ˗̶ М. 32. ˗̶ № 4. ˗̶ p.217–226.
- Лапидус А. Л., Михайлов М. Н. Изомеризация и ароматизация н-гексана на высококремнеземных цеолитах // Нефтехимия и нефтепереработка. ˗̶ 2006. ˗̶ № 6. ˗̶ с. 42–47.
- Ахмедов Э. И. Влияние состава палладийсодержащих цеолитов типа Y на их каталитические и кислотные свойства в реакции изомеризации н-гексана.// Нефтехимия. ˗̶ 2000. ˗̶ Т. 40. ˗̶ № 1. ˗̶с. 41–43.
- Blomsna E. Martens J., Jacobs P. A. Izomerization and hydrocrakinq of heptane over bimetallic bifunctional PtPd/H-beta and PtPd/USY zeolite catalysts // J.Catal. ˗̶1997. ˗̶ V.165. ˗̶p.241–248.
- Мирзалиева С. Э., Мамедов С. Э. Кобальтсодержащие цеолитные катализаторы в реакции изомеризации н-гексана // Процессы нефтехимии и нефтепереработки. ˗̶ 2006. ˗̶ № 1. ˗̶ с.107–109.
- Ющенко В. В. Расчет спектров кислотности катализаторов по данным термопрограммированной десорбции аммиака // ЖФХ. ˗̶ 1997. ˗̶Т. 71. ˗̶ № 4. ˗̶ с.628–632.
- Лафер Л. И., Дых Ж. А., Васина Т. В. ИК-спектроскопия катализаторов и адсорбированных молекул // Изв. АН СССР. Сер.хим. ˗̶ 1989. ˗̶ № 2. ˗̶ с.259–263.
- Патриляк К. И., Бортышевский В. А., Цупрык Н. Н. О природе активности цеолитов в реакции алкилирования изопарафинов олефинами // Докл. АН СССР. ˗̶ 1985. ˗̶Т. 283. ˗̶№ 2. с.384–389.