Для изучения поведения ионов благородных (платина, родий, палладий и т. д.) и других металлов (кобальт, висмут, железо и т. д.) в присутствии различных по природе и концентрации фоновых электролитов и инертных растворителей были проведены исследования в уксусной кислоте, н-пропаноле, ДМФА и ДМСО на фонах ацетатов калия, натрия, лития, перхлората и хлорида лития. Одновременно были проведены исследования с некоторыми комплексами хлоридов платиновых металлов по выявлению некоторых закономерностей электропроводности в н-пропаноле и его смесях с кетонами (метилэтилкетоном и ацетоном). Теоритические [1] и экспериментальные данные показали, что в амфипротных растворителях, сила последних как кислот изменяется при переходе от воды к спиртам и от спиртов к смесям, содержащим спирт-кетон.
Одновременно известно [2], что константа диссоциации кислоты в данном неводном растворителе тем меньше, чем ниже основность растворителя и его диэлектрическая проницаемость, а поскольку спирты обладают меньшей по сравнению с водой диэлектрической проницаемостью и являются менее основными средами, то наблюдается закономерное уменьшение констант диссоциации исследуемых комплексных хлоридов платиновых металлов.
Было показано, что добавление к спиртам кетонов еще больше уменьшает кислотную силу комплексных хлоридов платиновых металлов, что объясняется еще меньшей основностью кетонов по сравнению со спиртами и различным характером образования водородной связи с анионом кислоты, а также нарушением полимерной структуры спиртов в присутствии ацетона и метилэтилкетона.
Полученные некоторые физико-химические характеристики для комплексных хлоридов платины, палладия, иридия, родия, рутения и осмия в среде алифатических спиртов также отражают как сольватационные равновесия, так к кислотно-основные.
В конечном итоге существующие в системе обменные процессы ионов металлов с растворителями должны привести к возникновению хотя бы неизмеримо малых количеств сольватированных простых ионов соответствующего металла, а также к появлению в растворе «вымытых» из комплекса координированных групп. Однако, если хоть одна координированная группа представляет собой силу, способную к диссоциации протоносодержащую группу или остаток, способный к присоединению протона, то сольватационное равновесие осложняется равновесием кислотно-основного типа.
Совершенно очевидно, что в общем случае относительно более резко должна быть выраженной ступень сольватационного равновесия, отличающая отщеплению первого из координированных лигандов, в соответствующую ступень кислотно-основного равновесия (табл.).
Дальнейшие последовательные ступени реакции должны быть выражены в прогрессивно ослабевающей последовательности и то обстоятельство, что эти теоритически обязательные равновесия действительно имеют место доказывается на опыте явлением нарастания молекулярной электропроводности во времени, а также тем, что растворы солей комплексных хлоридов платиновых металлов показывают кислую реакцию и могут титроваться основаниями. В среде же смешенного растворителя спирт –ацетон предполагается, что должны наблюдаться аналогичные равновесия для комплексных хлоридов платиновых металлов, так как смешанном растворе должно произойти последовательное замещение молекул кетона в сольватной оболочке комплекса молекулами спиртов даже при небольших концентрациях последних в кетоновых растворах (явление пересольватации).
Таблица
Результаты электропроводности (NH4)2 [IrCl6] вн-пропаноле иего смесях метилэтилкетоном
н-пропанол |
н-пропанол +метилэтилкетон |
||||
CIr·10–2 М |
н·10–4 |
λ |
CIr·10–2 М |
н·10–3 |
λ |
0,2500 |
0,6008 |
48,06 |
0,2500 |
0,2590 |
39,80 |
0,1250 |
0,3286 |
52,57 |
0,1250 |
0,1891 |
42,60 |
0,0625 |
0,1823 |
64,21 |
0,0625 |
0,0876 |
47,60 |
0,0312 |
0,1030 |
76,84 |
0,0312 |
0,0523 |
52,31 |
0,0156 |
0,0600 |
92,02 |
0,0156 |
0,0274 |
62,27 |
0,0078 |
0,0358 |
105,00 |
0,0078 |
0,0105 |
69,89 |
0,0039 |
0,0026 |
129,40 |
0,0039 |
0,0085 |
95,11 |
0,0019 |
0,0013 |
140,50 |
0,0019 |
0,0053 |
125,30 |
На основании полученных экспериментальных данных по изучению электропроводности индивидуальных неводных протолитических растворителей и их смесей с инертными растворителями, содержащими индифферентные соли, можно заключить, что за исключением метилэтилкетона добавки всех изученных инертных растворителей (CHCl3, CCl4, C6H6, C6H14 и др.) приводят к увеличению омического сопротивления (понижению электропроводности) исследуемого раствора. Особенно это сильно проявляется в присутствии CCl4 и СHCl3.
Характер влияния метилэтилкетона несколько иной, его присутствие резко увеличивает электропроводность всего раствора. Выявленное такое сильное падение омического сопротивления всей исследуемой системы, по — видимому, объясняется его высокой диэлектрической константой по сравнению с таковой протолитического растворителя. С другой стороны, кетоны, представителем которых является метилэтилкетон, могут образовывать комплексы, легко диссоциируюшие на ионы, что естественно способствует повышению электропроводности всей системы.
В процессе изучения влияния индифферентных солей при прочих равных условиях было установлено, что наибольшей электропроводностью обладают протолитические растворители, содержащие перхлорат лития, а затем нитрат лития и наименьшей — ацетаты калия, натрия и лития. Высокую электропроводность неводных перхлорат — иона, являюшимся кислотным остатком хлорной кислоты, как самой сильной — в неводных и смешанных средах, соли которой, как правило, почти всегда полностью диссоциированы на ионы.
Как известно, важными физико-химическими характеристиками неводных и смешанных растворов являются их диэлектрическая проницаемость и вязкость. Изменение последнего параметра резко сказывается на их электропроводности, так как подвижность ионов электролитов сильно зависит от вязкости всего исследуемого раствора. С другой стороны, как показали экспериментальные результаты, изучение этих характеристик растворов электролитов в неводных и смешанных растворах дает возможность оценить энергетическую картину диссоциации электролита, что значительно дополняет и углубляет понимание природы растворов электролитов, существенно влияющей на их электропроводность, степень сольватации растворенных ионов или молекул, расположение или ориентацию дипольных молекул растворителя в сольватной оболочке.
Литературные [3] и экспериментальные данные подтвердили, что среди солей щелочных металлов соли лития (из-за малого радиуса-размера катиона) являются наиболее подвижными и сильно сольватирующими соединениями по сравнению с солями аммония, натрия и калия. Из вышеизложенного также можно предположить, что наиболее оптимальной средой для успешного проведения амперометрического, потенциометрического, кондуктометрического и других титрований ионов различных металлов является уксусная кислота и ее смеси с хлороформом и метилэтилкетоном, причем содержание последних не должно превышать 40±5 об. %.
Литература:
- Белеваецев В. И., Пешевицкий В. И. Исследование сложных равновесий в растворе. Новосибирск: Наука. -1978. — 256 с.
- Геворгян А. М. и др. Электропроводность неводных и смешанных растворов, содержащих ионы металлов. Деп. В ГФНТИ ГКНТ РУз, № 1873 — Уз 93. -1993. — 9 с.
- Геворгян А. М. и др. Влияние добавок инертных растворителей на электропроводность неводных и смешанных сред. Деп. В ГФНТИ ГКНТ РУз, № 1872 — Уз 93. -1993. -13 с.