Проектирование и строительство гидротехнических сооружений невозможно без проведения экспериментальных исследований. Здесь уместно привести слова Леонардо да Винчи: «Всякий раз, когда имеешь дело с водой, прежде всего обратись к опыту, а потом уже рассуждай». Действительно, роль экспериментов в гидравлике крайне велика. Изучение гидравлических явлений на моделях, созданных на основе теории подобия с применением определенных методик моделирования, позволяет получить данные о параметрах, которыми будет характеризоваться явление в натурных условиях. Экспериментальные исследования позволяют уточнить результаты, полученные в аналитических расчетах, при принятии тех или иных допущений. Методом гидравлических исследований можно считать рациональное сочетание аналитического и экспериментального методов.
Гидравдика – наука, изучающая законы равновесия и механического движения жидкостей и разрабатывающая методы применения этих законов для решения различных прикладных задач. В гидравлике принята гипотеза сплошности жидкости. Согласно этой гипотезе, жидкость рассматривается как континуум, непрерывная сплошная среда. Все параметры, характеризующие движение жидкости, считаются непрерывными вместе с их производимыми во всех точках. Благодаря таким предпосылкам стало возможным получение дифференциальных уравнений равновесия и движения жидкости в любой точке пространства, где движется жидкость [1].
В последнее время интенсивно развивается применение вычислительных методов в гидравлике. Используются как численные методы расчетов, так и численное моделирование гидравлических явлений.
Одним из проблем при эксплуатации гидротехнических сооружений является размыв дна нижнего бьефа сооружения. Для предотвращения размыва проводятся большие трудоемкие работы по укреплению дна русла сооружения. Строятся специальные сооружения для гашения потока воды (водобойные колодцы, стенки и др.).
Для уменьшения объема работ по укреплению нижнего бьефа и предотвращения размыва проводят гидравлические расчеты по результатам которых выбирают виды гасителей энергии и место их расположения.
В случае истечения жидкости из-под затвора или перелива через перегораживающее сооружение (плотину) происходит переход потока из бурного состояния в спокойное. При этом на относительно коротком участке русла происходит резкое скачкообразное увеличение глубины потока. Это явление в гидравлике называется гидравлическим прыжком.
Гидравлический прыжок можно рассматривать как остановившуюся волну перемещения. Если, например, поток, находящийся в бурном состоянии, внезапно преградить, то уровень воды перед преградой резко повысится (рис.1).
Рис.1Рис. 2
Рассмотрим вопрос о причинах и неизбежности возникновения гидравлического прыжка при переходе потока от бурного состояния к спокойному.
На рис.3 представлен график удельной энергии сечения применительно к руслу с нулевым уклоном дна (i=0). При этом, если плоскость сравнения совместить с плоскостью дна, удельная энергия потока Е и удельная энергия сечения Э совпадают. Перед гидравлическим прыжком состояние потока бурное, чему соответствует нижняя ветвь кривой Э=f(h). Спокойное состояние характеризуется верхней ветвью этой кривой. Потери удельной энергии hтрв гидравлическом прыжке обозначены ∆Эпр.
Если предположить, что возможен переход потока от бурного состояния к спокойному без гидравлического прыжка, то вначале при изменении глубины (рис. 2) от h'(в сечении перед Рис. 3прыжком) до hкр согласно кривой Э(h)удельная энергия сечения (и удельная энергия потока) должна уменьшиться от Э' до Эmin. При увеличении глубины от hкр до h" (в сечении непосредственно за прыжком) удельная энергия сечения (и потока) должна увеличиваться от Эmin до Э". Это физически невозможно, так как энергия при движении вязкой жидкости расходуется. Следовательно, гидравлический прыжок является единственно возможной формой перехода потока от бурного состояния в спокойное.
В зависимости от условий, в которых происходит гидравлический прыжок, наблюдаются различные его виды.
-Совершенный гидравлический прыжок отношение глубин h"/h'≥2,высота a>h'.
-Несовершенный или волнистый гидравлический прыжок (прыжок — волна) h"/h'<2, a
-Подпертый гидравлический прыжок.
-Затопленный гидравлический прыжок.
-Поверхностный гидравлический
В зависимости от их расположения по отношению к сечению за гидротехническим сооружением или к сечению изменения уклона дна канала от i>iкр до iкр.:
Относительно большая потенциальная энергия воды верхнего бьефа непосредственно за плотиной (водосливом) частично переходит в кинетическую энергию, в связи с чем скорости движения воды в нижнем бьефе резко увеличиваются. Наличие больших скоростей за плотиной заставляет, как отмечалось ранее, сооружать в нижнем бьефе плотины мощное, а следовательно, дорогостояшее крепление. Для того чтобы уменьшить мощность этого крепления и снизить его стоимость, необходимо на возможно более короткой длине за плотиной: а) преобразовать часть избыточной кинетической энергии в нижнем бьефе в потенциальную, доведя относительную глубину hc до величины hн; б) погасить оставшуюся часть избыточной кинетической энергии, т.е. рассеять ее (преобразовав в тепло за счет работы сил трения) [2]. Гася за плотиной избыточную кинетическую энергию, вместо отогнанного гидравлического прыжка получаем затопленный прыжок, причем мощность крепления в нижнем бьефе снижается.
По результатам анализа теоретических и экспериментальных исследований гидравлических явлений в гидротехнических сооружениях было разработано программное обеспечение, позволяющее в данном случае определить формы и виды гидравлического прыжка (Рис.5), построить графики прыжковой функции, рассчитать и подобрать виды гасителей энергии потока в нижнем бьефе сооружения (Рис.6).
При разработке программного обеспечения был использован язык программирования BorlandDelphi 7 и реляционная система управления базами данных Microsoft SQL Server 2008 R2.
Преимущества Delphi по сравнению с аналогичными программными продуктами.
– быстрота разработки приложения (RAD);
– высокая производительность разработанного приложения;
– низкие требования разработанного приложения к ресурсам компьютера;
– наращиваемость за счет встраивания новых компонентов и инструментов в среду Delphi;
– возможность разработки новых компонентов и инструментов собственными средствами Delphi (существующие компоненты и инструменты доступны в исходных кодах);
– удачная проработка иерархии объектов.
Система программирования Delphi рассчитана на программирование различных приложений и предоставляет большое количество компонентов для этого. Возможности Delphi полностью отвечают необходимым требованиям и подходят для создания систем любой сложности.
Microsoft SQL Server 2008 R2 – это комплексная платформа управления данными и бизнес-аналитики. Она обладает первоклассной масштабируемостью, возможностью создавать хранилища данных, продвинутыми средствами анализа и достаточной безопасностью, что позволяет использовать ее как основу для критически важных бизнес-приложений. Эта редакция позволяет консолидировать серверы и выполнять крупномасштабные OLTP-операции и создание отчетности [5].
Рис. 4 Ввод входных данныхРис.5 Построение модели прыжка
Рис. 6 Расчет и размещение гасителей энергии потока
Литература:
- Штеренлихт Д.В. «Гидравлика», М.: «Энергоатомиздат»,1984.–640c.
- Чугаев Р.Р. «Гидравлика».–4-е изд.–Л.:»Энергоиздат»,1982.–672с.
- Гаврилов М.Б. «Гидравлика», Алматы: ТОО «Издательство LEM»,2004.–316c.
- Шукаев Д.Н. Компьютерное моделирование. Алматы, КазНТУ, 2001г. 164 с.
- Тюкачев Н., Илларионов И., Хлебостроев В. Программирование графики в Delphi, СПб.: БХВ-Петербург, 2008. – 779 с.