Оптимизация технологического процесса производства карбида кремния | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 30 ноября, печатный экземпляр отправим 4 декабря.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №9 (113) май-1 2016 г.

Дата публикации: 04.05.2016

Статья просмотрена: 1627 раз

Библиографическое описание:

Закожурников, С. С. Оптимизация технологического процесса производства карбида кремния / С. С. Закожурников, Г. С. Закожурникова. — Текст : непосредственный // Молодой ученый. — 2016. — № 9 (113). — С. 147-150. — URL: https://moluch.ru/archive/113/29481/ (дата обращения: 16.11.2024).



Ключевые слова: печь сопротивления, производство карбида кремния, математическая модель, температурное поля, тепломассоперенос.

Одним из приоритетных направлений эффективного использования энергетических ресурсов в условиях производства является оптимизация технологического процесса.

Современным способом всестороннего изучения и оптимизации параметров промышленных объектов является математическое моделирование. Математическая модель — это уравнение или система уравнений, связывающих параметры процесса с факторами, влияющими на них. При этом факторы являются зависимыми переменными. Обычно существует также взаимная связь как между параметрами, так и между некоторыми факторами [1]. Комплексное моделирование способно решить задачи повышения энергоэффективности. Также моделирование позволяет избегать производственных экспериментов, что связано с экономией исходных материалов и потребления электроэнергии.

Рассмотрим процесс производства карбида кремния (SiC). Электрическая печь для производства карбида кремния относится к типу электропечи сопротивления. Конструкция боковых стенок печи изображенной на рис.1 имеет отверстия для выхода наружу образующихся в печи газов и последующего горения их вне печи.

сканирование0007

Рис. 1. Самоходная печь для производства карбида кремния: 1 — токоподводящие электроды; 2 — боковой щит передней стенки; 3 — кирпичная кладка; 4 — стойка для крепления боковых щитов; 5 — боковой щит задней стенки; 6 — контактный материал из графитированных отсевов; 7 — защитные электроды; 8 — торцовая стенка из огнеупорного кирпича; 9 — бетонный корпус торца; 10 и 12 — тележки концевые; 11 — тележка средняя

Карбид кремния в промышленных условиях получают восстановлением кремнезема углеродистым материалом. Протекающие при этом химические реакции можно представить брутто-уравнением

SiO2 + 3C = SiC + 2CO

Процесс получения SiC осуществляют в специальных электрических печах [2, 3], в которых разогрев исходных продуктов до необходимой температуры проводится электрическим током.

Реакция начинается при температуре около 1500 °С и протекает с поглощением энергии. В условиях неравномерности температур, которая всегда имеет место в печах для получения карбида кремния, химические реакции протекают в несколько стадий. Сначала образуется оксид кремния по реакции

SiO2 + C = SiО + CO.

Вступая в реакцию с углеродом, оксид кремния частично преобразуется непосредственно в карбид кремния по реакции

SiO +2C = SiС + CO,

а частично восстанавливается до кремния

SiO + C = Si + CO.

Пары кремния затем реагируют с углеродом с образованием конечного продукта:

Si + C = SiС.

Основным сырьем для производства карбида кремния служат кварцевый песок и нефтяной кокс. К сырьевым материалам предъявляются высокие требования по чистоте, так как большое содержание примесей (оксиды АI2O3, Fe2O3, СаО) снижает качество и выход годного карбида кремния. Кроме основных сырьевых материалов в реакционную шихту при загрузке печи добавляются возвратные материалы, полученные после электротермического процесса, — возвратная шихта и возвратный аморф. Возвратная шихта представляет собой смесь кварцевого песка, прокаленного нефтяного кокса и карбида кремния. Возвратный аморф — мелкокристаллический карбид кремния, полученный после сортировки куска карбида кремния [2].

Карбид кремния и остальные продукты плавки располагаются концентрическими слоями вокруг керна (рис. 2). За керном располагается слой графита, далее следует сам карбид кремния, а после него слои аморфа и силоксикона, т. е. непрореагировавшие с достаточной интенсивностью слои.

Карбид кремния (КК) выпускается промышленностью в виде двух разновидностей, отличающихся друг от друга цветом (КК зеленый (КЗ) и КК черный (КЧ)), качеством и технологией производства.

Рис. 2. Разрез печи по окончании плавки

Кроме вышеперечисленных сырьевых материалов при производстве зеленого карбида кремния в шихтовые материалы добавляется хлорид натрия и опилки. При производстве электротехнического карбида кремния в шихту добавляют глинозем.

В связи с тем, что процессы, протекающие в нагревательных печах, весьма энергоёмки, актуальным является проведение политики энергосбережения и повышение эффективности работы печей.

Немногие известные математические модели процесса производства карбида кремния используют существенно упрощенную картину процесса и не позволяют получить необходимую информацию об изменении важных для получения карбида кремния параметров, определяющих его качество и выход как конечного продукта производства.

Математическая модель производства карбида кремния должна состоять из системы уравнений, характеризующих технически и организационно обоснованные условия и показатели печи.

Математическое моделирование позволяет сократить энергопотребление за счёт устранения избыточного расхода энергии и реализации энергосберегающих мероприятий [4]:

  1. Повышение производительности печи.
  2. Снижение тепловых потерь.
  3. Оптимизации процесса плавки [5].
  4. Использование теплоты отходящих газов.
  5. Автоматизация работы печи.

Для получения полного математического описания необходимо провести анализ химических и физических процессов, протекающих в электрических печах, для выявления базовых факторов, которые необходимо учитывать при математическом моделировании для воспроизведения поля температур в рабочей зоне печи [6–11].

Представим упрощенную математическую модель для расчета температурного поля в печи сопротивления, которая состоит из двумерного дифференциального уравнения теплопроводности с внутренними источниками теплоты, представленного в виде:

(1)

где Т– температура, τ — время, λ — коэффициент теплопроводности, — мощность внутренних источников тепла в теле.

Причём мощность внутренних источников является комплексным параметром, состоящим из нескольких слагаемых, зависящих от большого количества величин.

Граничные условия, используемые для решения уравнения имеют следующий вид:

Начальные условия:

τ = 0: Т = Т0 = 300 К, P= P0 = 105 Па.

Все начальные параметры не зависят от координат.

Граничные условия при τ > 0:

X = 0, 0 ≤ Y ≤ 1; Y = 0, 0 ≤ X ≤ 1:

X = l, 0 ≤ Y ≤ 1; Y = l, 0 ≤ X ≤ 1:

где Tc — температура поверхностей стенок плавильной печи; Тж — температура окружающей среды; α — эквивалентные коэффициенты теплоотдачи, учитывающие особенности расположения поверхностей.

Для подтверждения работоспособности предложенной упрощенной модели процессов тепломассообмена необходимо провести ряд численных экспериментов. Результаты численных вариантов температурных кривых сравнить с известными данными из литературных источников. И по результатам численных экспериментов предложить возможные варианты оптимизации процесса производства карбида кремния в печах сопротивления.

Литература:

1. Егоров А. В. Расчет мощности и параметров электроплавильных печей: Учебное пособие для вузов. М.: МИСИС, 2000. 272 с.

2. Полубелова А. С., Крылов В. Н., Карлин В. В., Ефимова И. С. Производство абразивных материалов. — СПб.: Машиностроение, 1968. — 180 с.

3. Марковский Л. Я., Оршанский Д. Л., Прянишников В. П. Химическая электротермия. – Ленинград: Государственное научно-техническое издательство химической литературы, 1952. — 408 с.

4. Закожурников Г. С., Гаряев А. Б. Оценка потенциала энергосбережения в технологическом процессе плавки карбида кремния // Седьмая международная школа-семинар молодых учёных и специалистов Энергосбережение теория и практика, г. Москва, 13–17 октября 2014 г.

5. Кузеванов В. С., Закожурников С. С., Гаряев А. Б. Оптимизация процесса плавки карбида кремния с целью повышения её производительности и снижения расхода электроэнергии// Промышленная энергетика. — 2015. — № 6. — С. 29–33

6. Кузеванов В. С., Закожурникова Г. С., Закожурников С. С. Модель тепломассопереноса в печах при производстве карбида кремния // Альтернативная энергетика и экология. — 2015. — № 7. — С. 75–81.

7. Кузеванов В. С., Закожурникова Г. С. Модель сушки пористого проницаемого материала при внутреннем нагреве // Альтернативная энергетика и экология. — 2013. — № 14. — С. 19–23.

8. Кузеванов В. С., Закожурникова Г. С. Модель сушки пористого проницаемого материала при внутреннем нагреве // Письма в Международный научный журнал «Альтернативная энергетика и экология». — 2014. — № 3 (4). — С. 37–38.

9. Кузеванов В. С., Закожурникова Г. С. Общая модель для расчета поля давления в пористой среде с реагирующими компонентами // Известия ВолгГТУ. Серия Процессы преобразования энергии и энергетические установки. — 2014. –Т. 18 № 6 (145)– С. 106–110.

10. Кузеванов В. С., Закожурникова Г. С. Расчет поля давления в пористой среде с реагирующими компонентами // Известия ВолгГТУ. Серия Процессы преобразования энергии и энергетические установки. — 2014. — Т. 18 № 6 (145)– С. 110–113.

11. Закожурникова Г. С. Расчет поля давления в пористой среде с реагирующими компонентами / Материалы докладов X Международной молодежной научной конференции «Тинчуринские чтения» 25–27 марта 2015. В 3 т. — Казань: Казан. гос. энерг. ун-т, 2015. — Т.2. — С. 33–34.

Основные термины (генерируются автоматически): карбид кремния, производство карбида кремния, математическое моделирование, боковой щит, возвратная шихта, кварцевый песок, математическая модель, оксид кремния, печ сопротивления, температурное поле.


Ключевые слова

математическая модель, печь сопротивления, производство карбида кремния, температурное поля, тепломассоперенос., тепломассоперенос

Похожие статьи

Исследование кинетики формирования многокомпонентных материалов

Представлены результаты исследований влияния условий синтеза в варианте метода термического испарения в вакууме на параметры роста пленок многокомпонентных материалов на примере хромоникелевых сплавов.

Зависимость структурного совершенства гетероэпитаксиальных слоев из сложных оксидов от условий осаждения

Решение вопроса повышения несущей способности подшипников применением биметаллических материалов

В статье рассматривается проблемы нагрузок на подшипники и метод повышения устойчивости подшипников применяя примеси биметаллических материалов.

Исследование пористого кремния методом РЭМ

Приведены результаты исследования серии образцов пористого кремния в зависимости от плотности тока анодирования. Представлены изображения РЭМ.

Математическая модель нагрева волновода при передаче сигналов высокой мощности

Рассматривается проблема нагрева волноводов при передаче по ним сигналов повышенной мощности. Предложена расчетная модель нагрева тонкостенной конструкции прямого участка волновода и дифференциальное уравнение его теплового баланса с граничными услов...

Теория адсорбции атомов на некристаллических подложках

Обсуждаются основные квантово-механические модели адсорбции на монокристаллических металлических и полупроводниковых подложках и приводится их обобщение на аморфные и поликристаллические материалы.

Перспективы использования бурого угля Ангренского месторождения в качестве сырья для получения синтез-газа

В статье приводятся данные экспериментального исследования теплофизических характеристик бурого угля Ангренского месторождения, используя предложенный метод на основе квазистационарного теплового режима, сущность которого состоит в измерении температ...

Получение низкомодульных резин на основе пропиленоксидного каучука

В статье приведены и обсуждаются экспериментальные данные по получению смесевых композитов на основе пропиленоксидных и силоксановых каучуков и результаты определения их характеристик: динамического модуля, тангенса угла диэлектрических потерь, модул...

Использование технологии 3D-печати на этапе проектирования автомобильных компонентов

В статье рассматривается практическое использование технологии 3D-печати на предприятии-поставщике автокомпонентов. Анализируются популярные методы и материалы для изготовления прототипов.

Оптимизация условий поляризации в наноразмерных сегнетоэлектриках с целью дальнейшего применения в датчиках и МЭМС

Похожие статьи

Исследование кинетики формирования многокомпонентных материалов

Представлены результаты исследований влияния условий синтеза в варианте метода термического испарения в вакууме на параметры роста пленок многокомпонентных материалов на примере хромоникелевых сплавов.

Зависимость структурного совершенства гетероэпитаксиальных слоев из сложных оксидов от условий осаждения

Решение вопроса повышения несущей способности подшипников применением биметаллических материалов

В статье рассматривается проблемы нагрузок на подшипники и метод повышения устойчивости подшипников применяя примеси биметаллических материалов.

Исследование пористого кремния методом РЭМ

Приведены результаты исследования серии образцов пористого кремния в зависимости от плотности тока анодирования. Представлены изображения РЭМ.

Математическая модель нагрева волновода при передаче сигналов высокой мощности

Рассматривается проблема нагрева волноводов при передаче по ним сигналов повышенной мощности. Предложена расчетная модель нагрева тонкостенной конструкции прямого участка волновода и дифференциальное уравнение его теплового баланса с граничными услов...

Теория адсорбции атомов на некристаллических подложках

Обсуждаются основные квантово-механические модели адсорбции на монокристаллических металлических и полупроводниковых подложках и приводится их обобщение на аморфные и поликристаллические материалы.

Перспективы использования бурого угля Ангренского месторождения в качестве сырья для получения синтез-газа

В статье приводятся данные экспериментального исследования теплофизических характеристик бурого угля Ангренского месторождения, используя предложенный метод на основе квазистационарного теплового режима, сущность которого состоит в измерении температ...

Получение низкомодульных резин на основе пропиленоксидного каучука

В статье приведены и обсуждаются экспериментальные данные по получению смесевых композитов на основе пропиленоксидных и силоксановых каучуков и результаты определения их характеристик: динамического модуля, тангенса угла диэлектрических потерь, модул...

Использование технологии 3D-печати на этапе проектирования автомобильных компонентов

В статье рассматривается практическое использование технологии 3D-печати на предприятии-поставщике автокомпонентов. Анализируются популярные методы и материалы для изготовления прототипов.

Оптимизация условий поляризации в наноразмерных сегнетоэлектриках с целью дальнейшего применения в датчиках и МЭМС

Задать вопрос