В данной статье рассмотрены различные методы сегментации микроскопических изображений эпителиальных клеток, предназначенных для упрощения дальнейших задач классификации и распознавания гистологических объектов. Были применены такие распространенные методы сегментации как: пороговая сегментация, метод K-средних и метод водораздела.
Ключевые слова: сегментация изображений, микроскопические изображения, пороговая обработки, метод водораздела, метод K-средних
В последнее время роль анализа и обработки изображений в медицине существенно возросла. Качественная обработка медицинских изображений позволяет врачам диагностировать заболевания на разных стадиях. Объекты на медицинских изображениях характеризуются большой сложностью и многофакторностью, что в свою очередь требует надежности, точности и достоверности результатов исследований. [1] Изображениям, полученным с помощью микроскопа, свойственны шум, резкость, нечеткие границы объектов, которые порой едва различимы.
Сегментацией называют выделение отдельных областей или объектов на изображении. [2] Выделение объектов на медицинских изображениях как правило является весьма сложной задачей. Сегментация относится к числу важных этапов, качество выполнения которых во многом определяет точность и возможность дальнейшего анализа изображений. [3]
Цель работы: выполнить сегментацию микроскопических изображений эпителиальных клеток, полученных в результате неинвазивной цитологической диагностики, различными алгоритмами. При анализе гистологических объектов наиболее ценную информацию на изображении представляют ядро и контур клеток.
Пороговая сегментация
Пороговая сегментация один из простейших видов сегментации, в котором полутоновое изображение преобразовывается в бинарное посредством выбора порогового значения. В ходе бинаризации изображение становится черно-белым, а его пиксели имеют значения 0 или 1.
Для бинарного изображения справедливо следующее соотношение:
r(x, y) = (1)
где r(x, y), s(x, y) — уровни яркости пикселей изображения, L — пороговый уровень яркости.
Следовательно, на изображении r(x, y) пиксели, значения которых равны единице, принадлежат объектам, а те, которые равны нулю, относятся к фону. В бинаризации изображения яркость каждого пикселя сравнивается с пороговым значением. Если пиксель относится к объекту, то его значение равно единице, а если к фону, то — ноль. При пороговой обработке изображения одной из важных задач является правильный
выбор порога, т. к. ошибки в его значении приводят к искажению границ областей. [4] Существуют множество методов выбора порога и одним из наиболее эффективных среди них является метод Отсу [5], основанный на анализе гистограмме яркости изображения:
(2)
где N — общее количество пикселей на изображении, — количество пикселей на уровне i
Метод Отсу заключается в разделении изображения на два класса пикселей и выборе порога таким образом, чтобы он максимизировал межклассовую дисперсию:
(3)
где t — значение порога, и — вероятности двух классов, разделенных порогом t, а — дисперсия этих классов
Рассмотрим пороговую сегментацию для обработки микроскопического изображения эпителиальных клеток. Пороговая обработка как правило редко применяется в чистом виде, т. к. эффективна только для небольшого круга изображений, в которых объекты и фон четко различаются по яркостному признаку. [2]
Рис. 1. Сегментация методом Отсу
Рис. 2. Гистограмма изображения
Сегментация методом управляемого водораздела
При сегментации изображений довольно часто используется метод водораздела, основанный на математической морфологии. Суть данного метода заключается в том, что изображение рассматривается как рельеф, в котором линии водораздела — границы, разделяющие участки изображения на сегменты, а водораздельные бассейны — соответствующие области изображения.
Рис. 3. Идея метода водораздела
Главными недостатками данного метода являются чувствительность к шумам и избыточная сегментация, которая приводит к слишком большому выделению объектов, что вследствие ведет к низкой эффективности обработки изображения. Эту проблему вполне успешно способен решить маркерный водораздел, являющийся одним из эффективных методов сегментации изображений. [1] Алгоритм также ищет на исходном изображении «водосборные бассейны» и «линию водораздела», где белые пиксели расположены выше, а темные — ниже.
Основные этапы сегментации методом управляемого водораздела:
- Вычислить функцию сегментации изображения, на котором черные области являются объектами
- Вычислить маркеры переднего плана
- Вычислить маркеры фона, т. е. пиксели, не являющимися частью объекта.
- Модифицировать функцию сегментации таким образом, чтобы ее минимум располагался только на маркерах переднего плана и фона.
- Вычислить преобразование водораздела измененной функции сегментации.
Для начала необходимо преобразовать изображение в полутоновое и вычислить значение градиента яркости с помощью оператора Собеля. Оператор Собеля использует ядра 3x3, которые применяются к каждому пикселю изображения:
= , (4)
где Gx и Gy — две матрицы, где каждая точка содержит приближенные производные по x и по y.
Градиент вычисляется по следующей формуле:
G = (5)
После вычисления градиента можно приступать к реализации метода управляемого водораздела. Существуют несколько способов для поиска маркеров переднего фона. Это связанная группа пикселей внутри каждого объекта переднего плана. В данном методе используются такие морфологические операции как «раскрытие» и «закрытие», позволяющие анализировать внутреннюю область объектов изображения и формировать маркеры.
Рис. 4. Сегментация методом управляемого водораздела
Метод K-средних
Алгоритм K-средних — метод кластерного анализа, применяющийся в сегментации изображений. Главная идея метода сегментации K-средних заключается в разбиении объектов изображения на определенное количество кластеров k так, чтобы их средние значения максимально возможно отличались бы друг от друга. Одной из главных проблем данного алгоритма является отсутствие четких критериев для выбора числа кластеров и чувствительность к шумам.
Краткое описание алгоритма:
1) Число кластеров k должно быть задано заранее
2) Выбираются начальные центры кластеров (центроиды)
3) Для каждого пикселя найти ближайший к нему центроид
4) Вычислить значение центроида
В Matlab сегментация цветных изображений методом K-средних осуществляется следующим образом:
Сначала необходимо считать изображение и преобразовать его из цветовой модели RGB в цветовую модель L*a*b, обладающей самым широким цветовым спектром из всех моделей и наибольшей точностью. Модель L*a*b определяется двумя параметрами: L отвечает за яркость цвета, а хроматические компоненты a и b определяют цветовой фон и насыщенность. Изменяя параметр a, можно добиться изменения цвета от зеленого до красного. Параметр b содержит информацию о цвете в диапазоне от синего до желтого. [6]
Далее происходит сама кластеризация путем разделения объектов изображения на три кластера. Чтобы определить к какому кластеру относится каждый пиксель и измерить расстояние между ними используется Евклидова метрика:
d (p, q) = = (6)
где p и q — точки
Таким образом каждому пикселю объекта присваивается значение ‘a*’ и ‘b*’. Метод k-средних возвращает индекс соответствующего кластера, а затем создается сегментированное изображение на основе цветного.
Рис. 5. Сегментация методом K-средних
Выводы
Результаты сегментации показали, что наиболее предпочтительным и эффективным методом сегментации для микроскопических изображений эпителиальных клеток среди рассмотренных является метод управляемого водораздела, который выделил на изображении три различные клетки разным цветом, а также границы их контуров. При дальнейшей классификации клеток и распознавания это было бы очень удобно. Наиболее худший результат дал метод K-средних. После сегментации клетки на изображении стали плохо различимы, а границы одной из клеток стали размытыми.
Литература:
- Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB. — Техносфера, 2006. — 615 с.
- Красильников Н. Н. Цифровая обработка 2D и 3D изображений. — СПб.: БХВ-Петербург, 2011. — 608 с.
- Ковалев В. А. Анализ текстуры трехмерных медицинских изображений. — Минск: Беларусская наука, 2007. — 263 с.
- Мигун Н. П., Гнусин А. Б. Тепловые воздействия при капиллярном неразрушающем контроле. — Минск: Беларуская Наука, 2011 год. — 132 с.
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms // IEEE Transactions on Systems, Man, and Cybernetics. — Vol. 9. — No. 1 — 1979. — pp. 62-66.
- ЛевковецЛ. Б., Adobe InDesign CS4. Базовый курс на примерах — СПБ.: БХВ-Петербург, 2009. — 560 с.