Виды и способы металлизирования текстильных материалов для пошива специальной одежды | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 1 февраля, печатный экземпляр отправим 5 февраля.

Опубликовать статью в журнале

Авторы: , ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №11 (115) июнь-1 2016 г.

Дата публикации: 02.06.2016

Статья просмотрена: 5012 раз

Библиографическое описание:

Гаппаров, Х. Г. Виды и способы металлизирования текстильных материалов для пошива специальной одежды / Х. Г. Гаппаров, Я. Я. Хомидов, Г. К. Файзиева. — Текст : непосредственный // Молодой ученый. — 2016. — № 11 (115). — С. 310-313. — URL: https://moluch.ru/archive/115/30702/ (дата обращения: 18.01.2025).



Наиболее экономичным способом металлизации тканей является перенос на них тонкогоалюминиевого покрытия, которое предварительнополучают методомиспарения и конденсации в вакууме наполимерной пленке, обработанной так, чтобы покрытие легко отделялось от нее. На дублирующих машинах металлизированную пленку пропускают между валками вместе с тканью, на которую переноситсяалюминиевое покрытие. Полимерная пленкаостается пригодной для многократного использования. Производительность метода переноса в 30 раз больше, а стоимость полученной ткани на 20 % ниже, чем при прямой металлизации.Коэффициент отражениятканей увеличивается в результате металлизации алюминием в ультрафиолетовой, видимой иинфракрасной областях спектра более, чем в 2 раза. Металлизация тканей повышает их.

О перспективности вакуумной металлизации тканей свидетельствует широкий диапазон областей их применения. Металлизированная полульняная или асбестовая негорючая ткань применяется для изготовления теплозащитной одежды рабочих горячих цехов, бойцовпожарной охраныи работников лабораторий. Алюминиевое покрытие,нанесенное методом переноса, надежно защищает от воздействия сильных тепловых потоков. Для защиты людей и аппаратуры от сильных электромагнитных полейСВЧ и УВЧ применяется ткань, дублированная металлизированной в вакуумно полиэтилен терефталатной плёнкой, которую перфорируют с целью улучшения воздухопроницаемости. Из металлизированных тканей шьют экраны и чехлы для приборов, установок и различной аппаратуры, отражающие внутреннее или наружное тепловое излучение. Для легкихусловий эксплуатациимогут быть применены ткани из синтетических волокон, подвергнутые прямой металлизации, для более тяжелых — асбестовые ткани, металлизированные методом переноса.

Эффектные и нарядные металлизированные ткани применяются для пошива женской одежды и обуви, изготовления различных предметов с улучшенными декоративными свойствами (сумок, поясов, записных книжек, бумажников, ремешков для часов и т. п.). Кроме прямой металлизации тканей широко применяется вплетение металлизированных в вакууме полимерных нитей в обычные ткани.

Новый прогрессивныйметод получения покрытий — вакуумная металлизация — нашел широкое применение в радиоэлектронике, приборостроении, в авиационной, металлургической, лёгкой, пищевой и химической промышленности. Технологиявакуумных покрытийпозволяет наносить металлы, сплавы, окислы и другие соединения не только наметаллическую основу, но и на стекло, пластмассу, керамику, фарфор, ткани, бумагу, дерево, пленочные и другие рулонные материалы. По своим качествамвакуумные покрытияне уступают покрытиям, получаемым термодиффузией, лужением и гальваническим методом, а по многим показателям превосходят последние. Внедрение вакуумной металлизации дает большойэкономический эффект, позволяет резко сократить или полностью исключить применение остродефицитных и драгоценных металлов. В настоящее время все более актуальной становится необходимость производства и использования металлизированных текстильных материалов. На сегодняшний день такие материалы востребованы и в ближайшем будущем спрос на них будет расти. Это связано, прежде всего, с ростом количества источников электромагнитного «загрязнения» окружающей среды, вызванного появлением сотовой связи, персональных компьютеров и других источников ВЧ- и СВЧ-излучения.

Изготовление одежды, экранирующей от электромагнитных полей, получение текстильных материалов с антистатическими, бактерицидными, электропроводящими, радио отражающими, теплоотражающими и другими специальными свойствами требует использования металлизированных текстильных материалов. Металлизированные ткани и нетканые материалы по своим свойствам более универсальны, чем металлизированные пленки, производство которых налажено, но которые не пригодны для изготовления одежды и других изделий. Другое дело — металлизированный текстильный материал. Ткани, как известно, пропускают через себя водяные пары и воздух, они хорошо драпируются, прекрасно облегают любые выступы и впадины покрываемых поверхностей, устойчивы к физико-механическим воздействиям и, наконец, они намного долговечней пленок.

Существующие методы металлизации текстильных материалов из растворов электролитов экологически вредны т. к. при их производстве используются агрессивные и токсичные вещества, требующие утилизации. Текстильные материалы, металлизированные электрохимическим методом, имеют плохой товарный вид, жесткий гриф, покрытие обладает недостаточной адгезией к субстрату. Кроме того, данный способ не позволяет с достаточной точностью контролировать электропроводность ткани и другие ее свойства, имеющие большое значение для дальнейшего применения.

Существует также возможность металлизации текстильных материалов методом вакуум-термического испарения. Однако этот способ ограничивается возможностью напыления на текстильные материалы только тонких пленок алюминия, что существенно ограничивает его применение. Кроме того, процесс с трудом поддается контролю и получение тонких пленок алюминия заданной толщины (сопротивления) весьма проблематично.

Нами предлагается использовать для металлизации текстильных материалов метод магнетронного распыления, получивший широкое применение в микроэлектронике, однако до сих пор практически не применявшийся в текстильной промышленности. Метод основан на использовании аномального тлеющего разряда в инертном газе с наложением на него кольцеобразной зоны скрещенных неоднородных электрического и магнитного полей, локализующих и стабилизирующих газоразрядную плазму в при катодной области. Положительные ионы, образующиеся в разряде, ускоряются в направлении катода, бомбардируют его поверхность в зоне эрозии, выбивая из неё частицы материала. Покидающие поверхность мишени частицы осаждаются в виде пленки на подложке (ткани). Высокая кинетическая энергия частиц обеспечивает хороший уровень адгезии образующейся пленки к подложке.

Метод магнетронного распыления реализуется в достаточно глубоком вакууме (порядка 5х10–5мм рт. ст.) и позволяет наносить на ткани тонкие пленки меди, алюминия, титана, латуни, серебра, нержавеющей стали, бронзы и других металлов и их сплавов. Способ позволяет наносить на текстильные материалы также соединения некоторых металлов с кислородом или азотом. Например, можно наносить на поверхность тканей нитрид титана, получая ткань, окрашенную «под золото» или ткани с перламутровым эффектом.

Особенно необходимо отметить тот факт, что данный способ практически не загрязняет окружающую среду. Отсутствует необходимость в использовании каких-либо химических материалов, а значит — в очистке сточных вод, что должно скомпенсировать затраты, связанные с повышенным энергопотреблением оборудования в связи с необходимостью достаточно глубокого вакуумирования и использованием магнетрона. Установка оборудования не требует наличия специальных инженерных коммуникаций: станций очистки сточных вод, парогенераторов и паропроводов, химстанций и т. п. Это позволяет использовать данное оборудование даже в условиях т. н. малых предприятий.

При этом на поверхности материала осаждается тонкая плёнка настоящего металла или сплава, придающая тканям благородный и оригинальный оттенок, например, перламутровый, или металлический блеск нержавеющей стали, титана, золота, серебра, алюминия, бронзы и т. п. Указанные цвета и оттенки не достижимы ни одним из известных на сегодняшний день способов облагораживания текстильных материалов: гладкое крашение, пигментная печать, металлизация из растворов электролитов, вакуум-термическое испарение. Поскольку обработка тканей происходит в мягких условиях так называемой низкотемпературной плазмы — ткань сохраняет мягкий гриф, воздухо- и влагопроницаемость, драпируемость, прочностные характеристики.

Напыление слоя металла приводит к появлению у ткани электрической проводимости (рис.1). В отличие от других способов металлизации, способ магнетронного распыления позволяет достаточно тонко регулировать толщину металлического слоя, а значит и его сопротивление, что очень важно при создании структур с определенной проводимостью.

Рис. 1. Проводимость полиамидной ткани арт.5369–06. в зависимости от времени напыления

Появление проводимости приводит к тому, что синтетические ткани или нетканые материалы для пошива специальной одежды приобретают антистатические свойства. Это весьма важно, например, для создания искробезопасных фильтров, использующихся на взрывоопасных производствах. Появление проводимости даёт возможность получать материалы, экранирующие электромагнитные излучения. Это может быть использовано при создании легких, прочных, долговечных и декоративно привлекательных радио экранирующих и маскирующих в широком диапазоне частот. Цикл проведённых исследований позволил наработать экспериментальные партии экранирующих тканей и пленок, из которых были изготовлены и успешно испытаны экспериментальные партии маскирующих комплектов, применяющихся для маскировки военной техники и войсковых объектов на летнем растительном фоне от оптических и радиолокационных средств разведки (Рис.2).

image006.jpg

Рис. 2. Различные варианты комплектов, маскирующих от средств визуальной и радиолокационной разведок, изготовленных на основе металлизированных тканей, произведенных ООО «Ивтехномаш»

Магнетронный способ напыления является весьма экономичным. При определенных параметрах обработки возможно нанесение сверхмалых количеств металлов. Это полезно при напылении дорогостоящих металлов и сплавов, например, серебра (Рис. 3), небольшое количество которого, как известно, может придавать материалам бактерицидные свойства или металлов платиновой группы, используемых в качестве катализаторов.

image010.jpg

Рис. 3. Полиэфирная ткань, металлизирована серебром

Получено предварительное заключение о том, что марля с напылением тонкой пленки серебра обладает бактерицидной эффективностью, достаточной для практического применения в медицине. Такая марля после стерилизации была использована для местного лечения поверхностных ожоговых ран. На участках, укрытых посеребренным материалом, раны заживали быстрее.

Предварительные оценки показывают, что цена перевязочных средств, изготовленных на основе металлизированной марли, должна быть существенно ниже цены импортных салфеток на основе специальных мазей. Кроме того, такие перевязочные средства будут иметь практически неограниченный срок годности, тогда, как срок годности вышеупомянутых салфеток составляет несколько лет.

На вершине прогресса огромнейшую популярность приобрели металлизированные ткани. Они наделены множеством невероятных качеств, особенно востребованных в специализированных учреждениях: пожарных частях, больницах и многих других.

Способов металлизации ткани несколько. Некоторые из них дарят лишь металлический блеск, а некоторые — придают материалу особые свойства. Вот несколько основных способов:

  1. Создание полотна сразу из металлизированных нитей.
  2. Покрытие алюминиевым слоем, заготовленным изначально, и, впоследствии, соединяемым с тканью при помощи специального оборудования.
  3. Металлизация ионоплазменным распылением.

Специализированные структуры используют металлизированные ткани для создания эргономичных костюмов с отражающими знаками. Помимо прочего, описываемые материалы необходимы в медицинских учреждениях — больницах и роддомах.

Литература:

  1. Айвазян С. А. Основы моделирования и первичная обработка данных / С. А. Айвазян, И. С. Енюков, Л. Д. Мешалкин. М.: Финансы и статистика, 1983.-471 с.
  2. Бузов Б. А. Материаловедение в производстве изделий лёгкой промышленности (швейное производство) / Б. А. Бузов, Н. Д. Алыменкова.-М.: Академия, 2008. 448 с.
  3. Тушинский Л. И. Исследование структуры и физико-механических свойств покрытий / Л. И. Тушинский, А. В. Плохов. М.: Наука, 1986.-200 с.
Основные термины (генерируются автоматически): ткань, материал, магнетронное распыление, вакуум-термическое испарение, вакуумная металлизация, изготовление одежды, металлический блеск, метод переноса, прямая металлизация, тонкая пленка алюминия.


Задать вопрос