В представленной работе рассматривается метод формирования покрытий из металлической плазмы вакуумно-дугового разряда. Предложен метод получения покрытия, состоящего из последовательно напыленных нанослоев чистого металла и карбидов переменного состава.
Ключевые слова: вакуумно-дуговой разряд, плазменный поток, покрытие, карбидные фазы,интерметаллид, катодное пятно
Сеточные электроды генераторных ламп, выполненные из молибденовой или вольфрамовой проволоки, располагаются непосредственно в зоне электронного потока и должны обеспечивать высокое тепловое рассеивание, сохранять при этом свои геометрические размеры и обладать малым коэффициентом вторичной эмиссии. Для большинства типов мощных генераторных приборов, установленная норма паразитной термоэлектронной эмиссии составляет 10–5 А/см2.
- Методы нанесения антиэмиссионных покрытий.
Сеточные электроды генераторных ламп, выполненные из молибдена, вольфрама, или тантала, имеют антиэмиссионное покрытие, полученное по технологии, включающей получение промежуточного слоя, образованного металлоидом и металлом, из которого выполнена сетка, и поверхностного слоя платины.
1.1 Особенности формирования покрытий на сеточных электродах генераторных ламп.
Изготовление антиэмиссионного покрытия на сеточных электродах из молибдена, включающий в себя: формирование катафорезом слоя карбида циркония толщиной порядка 10 мкм; припекание в вакууме при температуре 1000...1300 С. В композиционном покрытии, полученным таким способом, антиэмиссионным слоем является платина, а карбид циркония выполняет роль диффузионного барьера между платиной и керном сетки.
Для уменьшения термоэлектронной эмиссии сеточный электрод покрывают металлом 8-й группы периодической системы, в частности, платиной. Для уменьшения диффузии в керн сетки и повышения излучающей способности, между основным металлом и платиной наносят промежуточный слой, состоящий из соединений Zr — Pt или Ti — Pt.
Такой способ получения антиэмиссионного покрытия включает в себя следующие технологические операции: на сетку методом катафореза осаждается порошкообразное интерметаллическое соединение Zr — Pt или Ti — Pt толщиной 5...10 мм, после чего оно в течение 20 минут припекается при температуре 1500...1600 С в атмосфере инертных газов или в вакууме; после чего сетку вновь отжигают в вакууме при температуре 1500...1600 С.
На сегодняшний день широкое практическое применение нашло интерметаллическое покрытие Pt3Zr.
1.2 Разработка ипромышленное освоение оборудования для нанесения покрытий впроизводстве мощных генераторных ламп.
В настоящее время особый интерес с технологической точки зрения вызывают вакуумно-дуговые источники плазмы, что объясняется высокой их эффективностью при получении ионизированных и высокоскоростных потоков вещества; открывшейся возможностью управления, протеканием технологического процесса нанесения покрытий из плазмы различных материалов: чистых металлов, например — Cu, Al, Ti, C, W, Zr; осуществления плазмохимического синтеза простых и сложных соединений — Ti2N, ZrN, CrN, ZrC, AlN, TiCN, ZrCN; воспроизведения сплавов и получения сложных комбинированных покрытий — CoCrAlY, Ti2AlN. Особенностью получаемых покрытий является высокая их адгезия на материалах с различными физико-химическими свойствами.
При разработке технологического процесса нанесения покрытий с применением вакуумных дуговых источников плазмы выделяют три основные стадии: формирование потока плазмы, обеспечение его транспортировки в рабочем объеме с минимальными потерями и осаждение плазменного конденсата на обрабатываемую поверхность.
- Методы получения антиэмиссионных покрытий.
Показано, что для мощных генераторных ламп с экранирующим сеточным электродом основные решения сводятся к использованию многослойных покрытий с оконечным использованием платины. При этом, наиболее эффективным, следует считать интерметаллическое покрытие Pt3Zr с температурой плавления свыше 2540 С. Интерметаллиды на основе платины сохраняют стабильные свойства в узком температурном интервале. Это связано с высоким поляризующим действием платины и развивающимся при нагревании ее соединений эффектом, приводящим к разрушению химических связей и восстановлению исходного металлического состояния.
В этом способе, при получении антиэмиссионных покрытий, для формирования слоя карбида циркония (ZrC) используются вакуумно-дуговые источники плазмы. Данный тип испарителей позволяет интенсифицировать процесс нанесения покрытий, обеспечить высокую их чистоту и хорошую адгезию.
Образование интерметаллического соединения Pt3Zr протекает при высокой температуре в вакууме на тугоплавкой подложке (Mo, W) при наличии слоя стабильного состава карбида циркония (ZrC) в присутствии и платины (Pt). Термическая обработка осуществляется в вакууме в диапазоне температур от 1670 до 1870 С. В сформированной системе, в результате высокотемпературных диффузионных процессов, определяющих кинетику изменения свойств материалов и характер фазовых превращений, а также обменных химических реакций, происходит взаимодействие элементов с образованием интерметаллического соединения
.
Содержание нового интерметаллического соединения не всегда подчиняется правилам валентности. Его состав зависит и от качества, и от толщины сформированного слоя карбида циркония (ZrC), поверхностных свойств подложки, еще от толщины слоя платины (Pt), а также за время отжига.
Благодаря наличию свободной платины активно протекают процессы встречной диффузии атомов свободной платины (Pt) в подложку и материала подложки (Mo, W) в покрытие. Это все обусловливается хаотическим тепловым движением атомов, и наличием градиента концентраций.
Процессы диффузии в покрытиях снижаются за счет использования многослойных покрытий, потому что любая граница фаз представляет собой энергетический барьер для диффундирования атомов, и за счет того, что образовываются многокомпонентные фазы благодаря диффундирующим элементам. Эти фазы состоят из нескольких структурных зон, которые расположены последовательно по мере удаления от границы раздела «поверхность — покрытие».
Данный способ получения интерметаллического антиэмиссионного покрытия Pt3Zr на сеточных электродах мощных генераторных ламп, включает последовательное формирование слоев карбида материала сеточного электрода, слоя циркония, с образованием комбинированной системы слоев [Мо — (Мо2С — МоС) + (ZrC — Zr)], напыления покрытия карбида циркония (ZrC), осаждения гальваническим способом слой платины (Pt) и диффузионного отжига.
Использование предварительно сформированного слоя из карбида материала сетки (Мо2С — МоС) в процессе получения антиэмиссионного покрытия позволяет в процессе эксплуатации создать барьерный слой для диффузии платины в керн материала сетки.
Когда сформировался подслой карбида материала сетки на подложку, которая имеет толщину до 2 μm, сразу происходит напыление переходного слоя циркония. Тогда, из-за высокоэнергетичных ионов (ZrII, ZrIII) и одновременной диффузии атомов, которые осаждаются на границе поверхностного раздела (MoC — Zr), начинает происходить образование новой комбинированной фазы (Мо — MoС — C — Zr), которое сопровождается появлением зерновой структуры. Наличие циркония приводит к возрастанию растворимости углерода в молибдене и формированию твердых растворов замещения.
Образование промежуточного слоя, у которого имеется согласованные свойства покрытия и подложки снижает напряжения, поднимается показатель прочности сцепления и является основой для синтеза из потока металлической плазмы вакуумно-дугового разряда в среде газа С6Н6 покрытия карбида циркония (ZrC), которое имеет толщину порядка 7 мкм.
Для осуществления плазмохимического синтеза карбида циркония (ZrC) в плазменный поток вакуумно-дугового разряда вводится углеродосодержащий рабочий газ — бензол (С6Н6).
Время напыления определяется толщиной формируемого слоя. В процессе напыления такие рабочие режимы как ток разряда и давление рабочего газа не изменяются.
Состав исходного углеродосодержащего газа определяет как выход углерода, так и характер протекания химической реакции образования карбидных соединений. Качество слоя карбида циркония определяет качество формируемого интерметаллида.
- Технология формирования антиэмиссионого покрытия сложного состава.
Техническим результатом данной работы является создание бездефектного слоя карбида циркония, обеспечивающего как получение интерметаллического соединения высокого качества, так и повышение эксплуатационных свойств приборов.
Получение слоя карбида циркония, состоящего из комбинированного набора нанослоев, получается за счет изменения давления реакционного газа, подаваемого в рабочий объем, в пределах, обеспечивающих последовательное формирование следующих покрытий:
− при давлениях ниже 2·10–2 Па покрытие, осаждаемое из потока металлической плазмы, формируется из чистого металла, распыляемого катодным пятном вакуумно-дугового разряда;
− при давлениях порядка 4.5·10–2 Па и выше начинается процесс плазмохимического синтеза соединения с образованием карбида переменного состава;
− в интервале давлений 7.5·10–2 Па и выше протекает процесс образования слоя карбида на фоне осаждения на обрабатываемой поверхности свободного углерода.
Таким образом, предлагаемая технология, с указанными технологическими режимами для данного варианта, позволяет получить интерметаллическое соединение высокого качества и тем самым обеспечить заданные эксплуатационные свойства антиэмиссионных сеточных покрытий.
Заключение.
Данный метод позволяет получить плазмохимическое покрытие, за счет изменения подачи рабочего газа. Данный способ применим для любого типа покрытий, в том числе, и для получения интерметаллического антиэмиссионного сеточного покрытия, обеспечивающий повышение качества, и оказывающий влияние на долговечность выпускаемых приборов.
Литература:
- Кудинцева Г. А. Термоэлектронные катоды. Л.: Энергия, 1968.
- Никонов Б. П. Оксидный катод. М.: Энергия, 1979.
- Прилуцкий В. С. Вольфрамовый торированный карбидированный катод.
- Лисенков А. А., Ветров Н. З. Вакуумные дуговые источники плазмы. СПб.: Энергоатомиздат, 2000.
- Лисенков А. А., Фролов В. Я. Вакуумно-дуговые устройства: Учеб. пособие / СПбГПУ. СПб., 2008.
- Венгрия.Патент № 161846.Заявл.25.09.71, опубл. 30.03.74.
- ФРГ. Патент № 2202827. Заявл. 21.01.72, опубл. 08.11.799.
- Франция. Патент № 1.573.686. Заявл. 19.07.68, опубл. 04.07.69.
- Вильдгрубе В. Г., Церпицкий Б. Д., Шаронов В. Н., Шаталов С. М. Сетки мощных генераторных ламп. Проблемы, пути развития. Электронная техника. Серия электровакуумные и газоразрядные приборы. Вып. 2(125), 1989. С.43–52.
10. Lisenkov A. A., Valuev V. P. Vacuum Arc Discharge on Integrally Cold Cathode // Vakuum in Forschung und Praxis. 2011. V. 23. Iss. 6. P. 32–36.
- Bystrov Yu. A., Vetrov N. Z., Lisenkov A. A. A vacuum arc plasma source with extemded design // Vakuum in Forschung und Praxis. 2013 Vol. 25 Iss.4Р. 45–48.
12. Bystrov Yu. A., Vetrov N. Z., Lisenkov A. A. Kostrin D. K. Technological Capabilities of Vacuum Arc Plasma Sources // Vakuum in Forschung und Praxis. 2014; Vol. 26. Iss. 5. Р. 19–23.
- Bystrov Yu. A., Vetrov N. Z., Lisenkov A. A. Kostrin D. K. Сathode Sports of Vacuum Arc Discharges. Motion Control on the Working Surface // Vakuum in Forschung und Praxis. 2015; Vol.27. Iss.2. Р.22–25.
14. Vinogradov M. L., Barchenko V. T., Lisenkov A. A., Kostrin D. K., Babinov N. A. Gas Permeation through Vacuum Materials. Mass-spectrometry Measurement System // Vakuum in Forschung und Praxis. 2015. Vol. 27. Nr. 3. P.24–27.
- Bystrov Yu. A., Vetrov N. Z., Lisenkov A. A. Plasmachemical Synthesis of Titanium Carbide on Copper Substrates // Technical Physics Letters. 2011. Vol.37. № 8. С. 707–709.
- Bystrov Yu. A., Vetrov N. Z., Lisenkov A. A. Plasmachemical Synthesis of Aluminum Based Nitride Compounds in Vacuum Arc Discharge Plasma. // Technical Physics Letters. 2012; Vol. 38. № 10: Р. 938–940.
- Bystrov Yu. A., Vetrov N. Z., Lisenkov A. A. Special Aspects of Structure Formation of a Multicomponent Layer from Arc-Vacuum Plasma // Technical Physics Letters. 2013; Vol. 39, № 10. Р. 914–916.
- Bystrov Yu. A., Vetrov N. Z., Lisenkov A. A. Peculiarities of the Formation of Intermetallic Coatings Based on Platinum and Zirconium. // Technical Physics Letters. 2014; Vol. 40, № 12. Р. 1126–1129.
- Barchenko V. T., Lisenkov A. A. (ИПМашРАН), Vinogradov M. L. Apparatus and method for determining the gas permeability and flux of Helium throung the materials and coatings // LTD Coating 2014. Journal of Physics: Conference Series 567 (2014) 012002.
- Barchenko V. T., Lisenkov A. A. (ИПМашРАН), Babinov N. A. Module for dielectrics surface modification by fast neutral particles beams // LTD Coating 2014. Journal of Physics: Conference Series 567 (2014) 012029.
- Barchenko V. T., Trifonov S. A., Lisenkov A. A. Modernization of ion plasma modules for application of nanostructured carbon coatings // Известиявысшихучебныхзаведений. Физика. 2014. Т. 57. № 11–3. С. 5–7.
- Vetrov N. Z., Kostrin D. K., Lisenkov A. A., Popova M. S. Antiemissive coatings // Journal of Physics: Conference Series 652 (2015) 012032.
- Pavlenko T. S., Lisenkov A. A., Babinov N. A Features of formation concentration profile in structured materials // Journal of Physics: Conference Series 669 (2016) 012039.