Экологически безопасным и экономически эффективным способом утилизации отходов городского хозяйства органического происхождения является компостирование. Для ускорения процесса трансформации субстратов (шламы автомоек и опалые листья) использовали штаммы бактерий ТМ-6, ММ-17, ММ-18 обладающие, свойством нейтрализации токсического действия тяжелых металлов (ТМ) и нефтепродуктов. После четырехмесячного компостирования получены субстраты различного компонентного состава, которые оценивались методом фитоиндикации. В результате проведенных исследований выявленно, что при фитоиндикации субстрат листья с шламами в пропорции 1:1 обработанный штаммом ММ-18 оказывает положительное влияние на рост и развитие растений. Установлено, что концентрация хрома для шламов в 6,9 раз больше ПДК, в остальных компоста ниже ПДК. При определении суммарного количества нефтепродуктов обнаружен максимальный уровень их деструкции штаммом ММ-17–25,9 %. Положительное влияние штаммов бактерий на детоксикацию городских отходов показывает, что для получения полноценного компоста необходимо более длительное время трансформации субстратов.
Ключевые слова: шламы автомоек, штаммы бактерии, компостирование, фитоиндикация, тяжелые металлы, нефтепродукты
Введение. Одной из проблем расширения и развития современных городов является загрязнение окружающейсреды промышленными и коммунальными отходами. В Крыму: из 28 официально зарегистрированных полигонов и свалок функционируют только 9, у остальных срок эксплуатации уже закончился [1]. Вслед за городами стремительно растут городские автопарки и соответственно увеличивается численность автомоек [2]. Так, шламы автомоек содержат нефтепродукты (дизельное топливо, бензин, автомобильное моторное масло), тяжелые металлы (ТМ), поверхностно-активные вещества и другие токсичные соединения [3, 4].
Важную функцию экологической защиты города выполняют древесные насаждения. Опавшие листья являются главными аккумуляторами техногенных тяжелых металлов, а также содержат большое количество трудно разлагаемых органических соединений [5].
Экологически безопасным и экономически выгодным способом утилизации отходов человеческой деятельности, в том числе и осадков сточных вод, является компостирование. Микроорганизмы участвуют в трансформации токсикантов, в запасе и переходе питательных веществ в доступную для растений форму, в гумусообразовании — что составляет основу почвенного плодородия [6]. Так, утилизация городских отходов, в частности шламов автомоек в черте города Симферополя, мало изучена, исследования в этой области принадлежат к числу наиболее актуальных проблем современного города.
Целью данной работы являлось получение высокопродуктивного компоста. Основная задача состояла в подборе оптимального соотношения субстратов и поиск эффективных штаммов для бактеризации компоста.
Материалы иметоды. В работе для бактеризации компоста были использованы ранее выделены нами эффективные штаммы микроорганизмов: ТМ-6, ММ-17, ММ-18, устойчивые к действию тяжелых металлов и нефтепродуктов [7]. Компостировали шламы автомоек с опалыми листьями рекреационных зон г. Симферополя. Для определения фитотоксичности компостируемой массы в процессе их трансформации использовали тест-растение: газонную траву Райграс английский Lolium perenne (L.), которую высевали в компост через 4 месяца от начало компостирования шламов. Для этих исследований нами использован метод почвенных пластинок по Н. А. Красильникову [8]. Фитотоксичность рассчитывается по формуле: Ф(%) = (длина ростка на контроле — длина на экспериментальном участке)×100 / длина ростка на контроле. Оценка фитотоксичности проведена по четырем группам: 1. менее 20 — фитотоксичность не проявляется; 2. 20–40 — слабая фитотоксичность; 3. 40–60 — средняя фитотоксичность; 4. более 60 — сильная фитотоксичность [9]. Определения концентрации тяжелых металлов (Cu, Pb, Cr и Hg) и нефтепродуктов в компосте анализировали атомно-абсорбционным спектрофотометром.
Результаты иобсуждения.Установлено, что подавление количества проростков в образцах превышало 25 % относительно контроля, в то же время токсичность субстратов не влияла на высоту проростков(табл. 1). Минимальное ингибирование длины корней наблюдалось в варианте при обработке штаммом ТМ-6 листья (Л) + шламы (Ш) 1:1 и составило 6,0 %. Установлен средний показатель токсичности шламов, так подавление количества проростков составило 41,4 %, подавление высоты проростков — 54,6 %, подавление длины корней — 44,0 %. Результаты наших исследований показали, что после четырех месяцев компостирования субстрат не теряет своей токсичности в большинстве вариантов опыта. Однако, при инокуляции штаммами ММ-18 в равных пропорциях: Л + Ш (1:1) выявлено положительное влияние на все параметры развития растения.
Таблица 1
Фитотоксичность компоста по интенсивности развития газонной травы Loliumperenne (L.)
Вариант опыта |
Количество проростков, шт. |
Фитотоксичность по количеству проростков,% |
Длина корней, мм |
Фитотоксичность по длине корней,% |
Высота проростков, мм |
Фитотоксичность по высоте проростков, % |
Контроль (увлажненная фильтровальная бумага) |
21,0 |
- |
33,6 |
- |
27,1 |
- |
Л+Ш (1:1) |
14,7 |
30,0 |
39,9 |
-18,8 |
38,5 |
-42,1 |
Л+Ш (1:2) |
14,5 |
31,0 |
28,7 |
14,6 |
27,7 |
-2,2 |
Л+Ш(1:1) +ТМ-6 |
13,7 |
34,8 |
31,6 |
6,0 |
28,0 |
-3,3 |
Л+Ш(1:2)+ТМ-6 |
19,0 |
9,5 |
24,0 |
28,6 |
30,3 |
-11,8 |
Л+Ш(1:1)+ММ-17 |
17,0 |
19,0 |
27,0 |
19,6 |
30,9 |
-14,0 |
Л+Ш(1:2)+ММ-17 |
14,0 |
33,3 |
22,9 |
31,8 |
28,1 |
-3,7 |
Л+Ш(1:1)+ММ-18 |
19,5 |
7,1 |
27,6 |
17,9 |
27,6 |
-1,8 |
Л+Ш(1:2)+ММ-18 |
16,5 |
21,4 |
25,6 |
23,8 |
29,4 |
-8,5 |
Шламы |
12,3 |
41,4 |
18,8 |
44,0 |
12,3 |
54,6 |
НСР05 |
2,6 |
|
1,68 |
|
1,96 |
|
Примечания: Л — листья, Ш — шламы.
По результатам спектрального анализа определено содержание в компостируемых смесях ТМ (табл. 2). В каждом из вариантов ТМ не превышали предельно допустимую концентрацию ионов меди (<0,2) и ртути (<0,005). Концентрация хрома в шламах в 6,9 раз выше ПДК почв, а в остальных вариантах — в пределах допустимой концентрации.
Таблица 2
Содержание тяжелых металлов (Pb, Cr) вкомпосте, мг/кг
Вариант опыта |
Металлы |
|
Pb(мг/кг) |
Cr(мг/кг) |
|
Л+Ш(1:1) |
< 5,0 |
< 2,0 |
Л+Ш(2:1) |
< 5,0 |
< 2,0 |
Л+Ш(1:1) +ТМ-6 |
< 5,0 |
< 2,0 |
Л+Ш(2:1) +ТМ-6 |
< 5,0 |
< 2,0 |
Л+Ш(1:1) +ММ-17 |
< 5,0 |
4,5 |
Л+Ш(2:1) +ММ-17 |
< 5,0 |
2,1 |
Л+Ш(1:1) +ММ-18 |
< 5,0 |
< 2,0 |
Л+Ш(2:1) +ММ-18 |
< 5,0 |
< 2,0 |
Шламы |
< 5,0 |
41,6 |
ПДК в почве |
6,0 |
6,0 |
Примечания: Л — листья;Ш — шламы.
Также проводили анализы по определению количественного содержания в субстратах нефтепродуктов. В процессе детоксикации субстратов выявлено, что максимальный уровень деструкции после 4 месяцев компостирования для нефтепродуктов составлял 25,9 % в варианте опыта с использованием компоста, компоненты которого взяты в соотношениях 1:2(листья: шламы) с обработкой штаммом ММ-17 (рис.1). Ориентировочно допустимая концентрация (ОДК) нефтепродуктов в почвах России — 3г/кг почвы.
Рис. 1. Содержание нефтепродуктов в компостируемых субстратах
Примечания: Л — листья;Ш — шламы.
В субстратах также определяли содержание анионные поверхностно-активные вещества, однако после четырехмесячного компостирования существенных изменений не выявлено.
Выводы. Таким образом, в результате проведенных исследований выявленно, что при фитоиндикации субстрат Л+Ш(1:1) обработанный штаммом ММ-18 оказывает положительное влияние на рост и развитие растений. Установлено, что концентрация хрома для шламов в 6,9 раз больше ПДК, в остальных компоста ниже ПДК. При определении количественного состава нефтепродуктов обнаружен максимальный уровень их деструкции штаммом ММ-17–25,9 %. Положительное влияние штаммов бактерий на детоксикацию городских отходов показывает, что для получения полноценного компоста для применения его в садово-парковом хозяйстве, необходимо более длительное время трансформации субстратов.
Литература:
- Перова, Д. В. Информационно-аналитический доклад «Крым: территория зеленой экономики» / Д. В. Перова, А. В. Перов, И. В. Юшков // М.: Фонд «Национальной энергетической безопасности» (ФНЭБ) — 2015.- 66с.
- Якубова, Э. Р. Экологическое обследование автомоекг. Симферополя / Э. Р. Якубова // Строительство и техногеннаябезопасность — Симферополь. — 2010. — № 32 — С. 157–162.
- Букатенко, Н. А. Результаты токсикологической оценки отработанных моющих растворов / Н. А. Букатенко, Л. А. Васьковец // Восточно-Европейский журнал передовых технологий. — 2012. — № 6 (59) том 5. — С. 47–49.
- Абдурашитова, Э. Р. Качественный и количественный состав тяжелых металлов в шламах автомоек г.Симферополя /Э. Р. Абдурашитова, Л. А. Чайковская // Біосфера XXI століття. — Севастополь — 2011. — С. 5–6.
- Ларионов, М. В. Содержание тяжелых металлов в листьях городских древесных насаждений /М. В. Ларионов // Вестник КрасГАУ. — 2012. — № 10 Экология — С. 71–75.
- Calleja-Cervantes M. E., Menéndez S., Fernández-González A. J. et al. Changes in soil nutrient content and bacterial community after 12years of organic amendment application to a vineyard // European Journal of Soil Science. — July 2015. — Vol. 66, Issue 4. — p. 802–812.
- Абдурашитова, Э. Р. Селекция новых штаммов микроорганизмов, устойчивых к тяжелым металлам, нефтепродуктам и поверхностно-активным веществам / Э. Р. Абдурашитова, С. Ф. Абдурашитов // Приволжский научный вестник. — 2015. — № 6–1 (46). — С. 24–27.
- Методы изучения почвенных микроорганизмов и их метаболитов / под ред. Н. А. Красильникова. — М.: Изд-во МГУ, 1966. — 216 с.
- Максимова, Н. Б. Оценка токсичности и загрязненности почв методом фитоиндикации / Н. Б. Максимова, Г. Г. Морковкин, А. Лаврентьева // Вестник Алтайского государственного аграрного университета. — 2003. — № 2. — С. 106–112.