Перенос радиоактивных веществ ватмосфере
После того, как радиоактивный газ или аэрозоль попадают в воздух, характер их перемещения и дисперсии определяется их собственными физическими свойствами и свойствами атмосферы, в которой они находятся. Выбросы проникают в атмосферу с определенной скоростью и температурой, которые обычно отличаются от соответствующих характеристик окружающей среды. Движение выбросов имеет вертикальную составляющую, обусловленную начальной вертикальной скоростью потока и разницей температур, до тех пор, пока не исчезнет воздействие этих факторов. Этот вертикальный подъем выбросов называют подъемом шлейфа (Δh). Он приводит к изменению эффективной высоты Н точки выброса. На путь распространения выброса воздействуют также изменения потоков вблизи таких препятствий, как здания и сооружения. Дальнейшее распространение примеси в атмосфере происходит путем рассеяния в результате турбулентной диффузии и ветрового переноса.
Переносом называется движение потока под действием ветра в течение и после подъема шлейфа. Ветровой перенос приводит к тому, что при непрерывном истечении примеси в атмосферу образуется струя выброса. При слабом ветре или при его полном отсутствии (штиле) диффузионный перенос может превалировать над ветровым переносом и тогда вокруг источника непрерывных выбросов образуется штилевое облако примеси.
Турбулентное движение атмосферы вызывает произвольное движение выброса, приводящее к его распространению в горизонтальном и вертикальном направлениях за счет смешения с воздухом. Этот процесс называется атмосферной диффузией, а комбинация переноса и диффузии называется атмосферной дисперсией [1].
Турбулентность обусловлена наличием в атмосфере беспорядочных завихрений, в которые вовлечены определенные массы воздуха. Они обладают собственными размерами, скоростью движения и сложным образом взаимодействуют между собой и поверхностью земли, распадаясь и образуя более мелкие вихри или сливаясь в крупные. Обычно в атмосфере присутствуют вихри различных размеров и форм. Источниками их возникновения являются силы трения при взаимодействии ветрового потока с землей и вертикальные потоки воздуха над нагретой поверхностью. Горизонтальные размеры атмосферных вихрей могут достигать нескольких сотен километров (типичный пример — циклоны и антициклоны). Вертикальные размеры вихрей в атмосфере обычно ограничены и составляют несколько сотен метров.
Диффузия примеси в воздухе происходит в результате воздействия турбулентных вихрей на облако выброса. Картина их взаимодействия существенно зависит от относительных размеров вихрей и облака. На рис.1 изображены идеализированные схемы рассеяния, качественно иллюстрирующие этот процесс.
Рис. 1. Качественные картины рассеяния примеси в атмосфере: а — большое облако в однородном поле мелких вихрей; б — маленькое облако в поле больших вихрей; в — облако в поле вихрей, соизмеримых с его размерами
В случае непрерывного выброса облако примеси имеет форму струи. Результатом действия мелкомасштабных вихрей на струю является увеличение ее поперечных размеров. На рис. 2 а схематично показаны границы струи в определенный момент времени (как на мгновенном фотографическом снимке) в результате 10-минутного и 2-часового осреднений (например, как если бы снимок был произведен с такой экспозицией). На рис. 2 б представлено распределение концентрации примеси для каждого из этих случаев. Уширение струи выброса зависит от времени осреднения.
Рис. 2. Очертания струи в зависимости от времени осреднения (а) и соответствующее распределение концентрации примеси в поперечном к струе направления (б): 1 — мгновенная струя; 2 — очертания струи, осредненной за 10 мин; 3 — очертания струн, осредненной за 2 ч
Выброс на стадии подъема шлейфа, переноса и диффузии может также испытывать воздействие таких процессов, как (рис.3):
(1) радиоактивней распад и накопление дочерних продуктов;
(2)влажнее осаждение:
‒ дождь иди снег (пар или аэрозоль попадают в капли воды или снежинки в облаке и выпадают в виде осадков);
‒ вымывание (пар или аэрозоль захватываются ниже дождевого облака падающими осадками);
‒ туман (пар или аэрозоль попадают в капли воды в тумане);
(3) сухое осаждение:
‒ седиментация аэрозолей или гравитационное осаждение (для частиц с диаметром более 10 мкм);
‒ отложение аэрозолей и адсорбция паров и газов на предметах, находящихся на пути ветра,
(4) образование и слипание аэрозолей;
(5) повторное образование взвесей веществ, осевших на поверхности.
Рис. 3. Поведение радиоактивных веществ, выброшенных в атмосферу
Характер распространения примеси в атмосфере существенно зависит от скорости ветра и вертикального температурного профиля атмосферы, который в свою очередь зависит от температуры воздушной массы и поверхности земли, потоков приходящей солнечной радиации и уходящего от земли тепла (радиационного баланса), влажности атмосферы, облачности [2].
Перенос радиоактивных веществ по пищевым цепочкам.
Прежде чем попасть в организм человека (за исключением внешнего облучения), радиоактивные вещества проходят по сложным маршрутам в окружающей среде. В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом, наблюдаемых нами на рис. 4.
Рис. 4. Поступление радиоактивных веществ в организм человека
Когда человек находится на загрязнённой территории, особую опасность представляет попадание радиоактивных веществ внутрь организма, поскольку в этом случае ни одежда, ни кожа не выполняет своих защитных функций. Из воздуха они попадают при дыхании. Взрослый человек за день фильтрует через лёгкие примерно 25 м3 воздуха, и при прохождении облака после аварии именно через лёгкие в организм попадало много радиоактивных аэрозолей. Сейчас облучение через дыхание связано с поступлением в лёгкие пыли, спор и других частичек, которые всегда есть над загрязнённой поверхностью, особенно при сельскохозяйственной обработке почвы.
С воздухом в организм человека поступает едва ли больше 1 % всей радиоактивности. Ещё примерно 5 % попадает с питьевой водой. Но основная опасность — это радионуклиды в пище.
Разные вещества по-разному накапливаются и выводятся из органов, среди которых есть своеобразные концентраторы радионуклидов.
По типу распределения в организме радионуклиды делятся на группы:
- Равномерный (элементы первой группы периодической системы — водород, литий, натрий, калий, рубидий, цезий, хлор, бром);
- Скелетный (щелочноземельные элементы — бериллий, кальций, стронций, барий, радий, цирконий, иттрий, фтор);
- Печѐночный (лантан, торий, плутоний, марганец);
- Почечный (висмут, сурьма, мышьяк, уран, селен);
- Тиреотропный (йод, бром, астантин).
В отличие от внешнего облучения опасность радионуклидов, попавших внутрь организма, обусловлена следующими причинами:
- Способность некоторых нуклидов избирательно накапливаться в отдельных органах, называемых критическими (например, до 30 % йода накапливается в щитовидной железе, которая составляет только 0,03 % массы тела), и, таким образом, отдавать свою энергию относительно небольшому объему ткани, создавая высокие локальные дозы излучения.
- Значительное время облучения до момента выведения нуклида из органа или уменьшения активности вследствие радиоактивного распада нуклида.
- Высокая опасность воздействия плотноионизирующих альфа- и бета- излучений, которые несущественны при внешнем облучении вследствие низкой проникающей способности.
Биологические периоды полувыведения нуклидов из критических органов и тканей составляют от десятков суток (тритий, углерод-14, натрий-24) до бесконечности (полное усвоение стронция-90, плутония-239). [3]
Практическое значение изучения поведения радиоактивных веществ в окружающей среде, и особенно искусственных, обусловлено, прежде всего, возможными радиационными последствиями их поступления в продукты питания человека. В исследованиях миграции радиоактивных веществ в биосфере важнейшее место принадлежит поведению их в пищевых цепочках с участием растений и животных. Это связано с тем, что потребление продуктов растительного и животного происхождения, загрязненных радионуклидами, является основным путем долговременного формирования доз внутреннего облучения. К настоящему времени накоплены обширные экспериментальные данные об особенностях перехода различных радиоактивных веществ из внешней среды в пищевые продукты. Изучены зависимости, связывающие интенсивность радиоактивных выпадений и содержание отдельных радиоактивных веществ в почве, способность различных видов растений к аккумуляции некоторых радионуклидов и закономерности их перехода в организм животных, особенности поведения радиоактивных веществ в таких специфических сообществах, как лес, водоемы, в том числе и морские. Сведения о них имеют значение для оценки поступления радиоактивных веществ в рацион населения, в особенности проживающего в условиях повышенного содержания продуктов радиоактивного деления в окружающей среде, и при разработке мероприятий, направленных на снижение их поступления в организм человека.
Литература:
- Гражданская защита: энциклопедический словарь / Под общ. ред. С. К. Шойгу. — М.: ДЭКС-ПРЕСС, 2005.
- Радиационная и химическая безопасность населения / В. А. Владимиров, В. И. Измалков, А. В. Измалков; Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий. — М.: Деловой экспресс, 2005. — 544 с
- Гудков И. Н., Кудяшева А. Г., Москалёв А. А. Радиобиология с основами радиоэкологии: учебное пособие / И. Н. Гудков, А. Г. Кудяшева, А. А. Москалёв. — Сыктывкар: Изд-во СыктГУ, 2015. –512с.