В ВСГУТУ разработан аппарат биоимпедансной диагностики, который позволяет оценить состояние органов и систем биологических объектов при различных внешних воздействиях (ожог, обморожение, наркоз и др. Для оценки работоспособности данного аппарата были проведены опыты на биологическом объекте (мышь) при воздействии наркоза. Анализ данных показал, что с увеличением частоты зондирующего тока и времени воздействия наркоза на биологический объект импеданс уменьшается.
Ключевые слова: аппарат, электрический ток, сопротивление биологических тканей, частота зондирующего тока, биоимпедансная диагностика, генератор, блок питания
Известны устройства биооимпедансной диагностики, которые определяют для заданной частоты зондирующего тока — сопротивление биологических тканей. При этом данные аппараты позволяют получить информацию о состоянии биологических тканей. Основными блоками данных устройств являются источник переменного тока, блок коммутации, токовые и потенциальные электроды и блок обработки результатов в виде АЦП [1, 2, 3, 4.].
Недостатками указанных устройств являются использование одной частоты зондирующего тока, разделение электродов на токовые и потенциальные, их малое количество, которые ограничивают количество информационных показателей, снимаемых с биологического объекта, обеспечивают невысокую точность измерений и не позволяют широко использовать данные устройства для проведения биоимпедансной диагностики.
В ВСГУТУ разработан аппарат для проведения биоимпедансной диагностики который состоит из следующих блоков — блока питания, стабилизатора, генератора, микроконтроллера, детектора, фильтра, электродов и ЖК-дисплея, который отличается от всех существующих тем, что позволяет одновременно получить данные импеданса при трех разных частотах зондирующего тока.
На рисунке 1 представлен общий вид аппарата электроимпедансной спектрометрии.
Рис. 1. Общий вид аппарата биоимпедансной диагностики
Блок питания выносной, обеспечивает питание схемы постоянным нестабилизированным напряжением 12 В. Мощность блока 6 Вт. Питающее напряжение поступает на стабилизатора, собранный на двух аналоговых микросхем LM3175 и LM7805. Первая представляет собой регулируемый стабилизатор, построенный на выходном напряжении 10В. Вторая — это нерегулируемый стабилизатор с выходным напряжением 5 В. Стабилизированное напряжение 10 В. питает повторитель генератора, а все остальные блоки используют напряжение 5В.
На рисунке 2 представлена структурная схема аппарата биоимпедансной диагностики.
Рис. 2. Структурная схема аппарата биоимпедансной диагностики
Генератор состоит из задающего генератора, функции которого выполняет микроконтроллер и усилители, собранного на микросхеме 4011. Объединив входы элемента получим инвертор, усиливающий входной меандр до уровня 10В. Выходное напряжение генератора поступает на активный электрод и на измерительную схему (D2, R5, C11), преобразует импульсное напряжение в постоянное и позволяет микроконтроллеру оценивать уровень выдаваемого на электроды сигнала.
Электрод прикладывают к биологическому объекту, через него протекает электрический ток и на измерительном электроде появляется потенциал.
Напряжение измерительного электрода поступает на схему измерения сдвига фаз и детектор (D1, R4, C10). Детектор вместе с фильтром преобразуют импульсное напряжение в постоянное для оценки его микроконтроллером.
Схема измерения сдвига фаз выполнена на микросхеме 4070, который, выдает импульсы шириной равной величине сдвига фаз. Далее импульсы преобразуются в постоянное напряжение (R6, C12).
Микроконтроллер выполняет несколько функций. Во — первых, генерирует последовательности импульсов частотой 50, 100 и 200 кГц со скважностью 50 %. Во — вторых, используя встроенный аналого-цифровой преобразователь, оцифровывает значения напряжения на активном, измерительном электроде ми со схем измерения сдвига фаз. В — третьих, на основе полученных данных вычисляет значение импеданса в условных единицах и выводит на ЖК-дисплей.
Для оценки работоспособности данного аппарата были проведены опыты на биологическом объекте (мыши) при воздействии наркоза. Последовательность проведения опытов: взвесили мышь — 150 гр; с помощью шприца ввести в мышечную ткань мыши общий наркоз 45 млг/кг; после того как мышь погрузилась в сон закрепляем ее на деревянной доске с помощью марлевых бинтов; в области сердца выстригаем небольшой участок шерсти;
Включаем аппарат и проверяем его готовность к работе; по истечению 5 минут на очищенные участки кожи мыши накладываем два электрода;
Через 15 секунд снимаем показания аппарата в омах; затем процедуру повторили через 10, 15, 20 минут в трех повторностях.
Таблица 1
Мышь под наркозом
|
50 кГц |
100 кГц |
200 кГц |
1 2 5 мин 3 |
250 244 244 |
140 250 250 |
102 175 175 |
1 2 10 мин 3 |
181 181 181 |
233 233 233 |
163 159 173 |
1 2 15 мин 3 |
181 181 181 |
233 233 233 |
159 166 159 |
1 2 20 мин 3 |
181 181 181 |
218 218 233 |
152 152 166 |
Так, при воздействии наркоза на биологический объект, анализ данных показал, что с увеличением частоты зондирующего тока на биологический объект импеданс уменьшается. С увеличением времени воздействия наркоза на биологический объект импеданс уменьшается. Так при воздействии наркоза через 5 мин. импеданс составил при частоте 50 кГц — 246 ом, а через 20 мин. импеданс при той частоте составил 181 ом.
Вывод
Разработан аппарат для проведения биоимпедансной диагностики биологических объектов, который позволяет одновременно получить данные импеданса при разных частотах зондирующего тока.Для оценки работоспособности данного аппарата были проведены опыты на биологическом объекте (мыши) при воздействии наркоза. Анализ данных показал, что с увеличением частоты зондирующего тока и увеличении времени воздействия на биологический объект импеданс уменьшается.
Литература:
- Николаев Д. В., Туйкин С. А., Балуев Э. П. Способ региональной биоимпедансометрии и устройство для её осуществления. Патент РФ № 2094013. 27.10.1997 г.
- Николаев Д. В., Похис К. А., Цветков А. А., Смирнов А. В. Способ региональной биоимпедансометрии. Патент РФ № 2204938. 27.05.2003 г.
- Капитанов Е. Н., Николаев Д. В. и др. Устройство для измерения электрического импеданса в частях тела. Патент РФ № 2242165. 20.12. 2004 г.
- Устюжанин В. А., Епифанцев В. В., Ишков А. А. Устройство для проведения импедансной спектрометрии биологических объектов Патент на полезную модель РФ. № 100894. 20.06. 2010 г.