В данной работе использована методика расчета для получения вольтамперных характеристик СКСЭ на основе рутениевого красителя. Однако методика может быть применена к СКСЭ на основе любого другого красителя. Коэффициент поглощения рутениевого красителя в диапазоне от до и другие параметры и константы взяты из источников [1,4,8, 9] и представлены в таблице 1.
Таблица 1
Параметры иконстанты, использованные вмодели
|
5.6 () |
T |
300 K |
|
|
|
0.9 эВ |
|
0.95 |
D |
|
На рисунке 2 представлена вольтамперная характеристика, полученная в зависимости от времени жизни электрона при толщине d=20 нм и = 0.9.
Рис. 2. Вольтамперная характеристика СКСЭ () в зависимости от времени жизни электрона
1 — 2 — ; 3 — ; 4 —
Таблица 2
Значения и
|
|
мВ |
|
,% |
0.8 |
11.170 |
819 |
0.828 |
7.572 |
0.9 |
12.470 |
822 |
0.858 |
8.482 |
0.95 |
13.120 |
823 |
0.827 |
8.937 |
1 |
13.770 |
824 |
0.827 |
9.392 |
Из таблицы 2 видно, что при увеличении , растет плотность тока короткого замыкания, а вместе с ним и энергоэффективность СКСЭ, тогда как напряжение холостого хода и фактор заполнения остаются практически неизменными.
На рисунках 3а и 3б изображены зависимости и [2,3]. Видно, что толщина данного слоя является важнейшим технологическим параметром, определяющим плотность тока короткого замыкания и энергоэффективность СКСЭ. Плотность тока короткого замыкания и энергоэффективность СКСЭ достигают максимальных значений в интервале от d=15 нм до d=20 нм [8,11]. Дальнейшее увеличение толщины приводит к уменьшению значений и эффективности СКСЭ. Также следует отметить, что толщина слоя TiO2 практически не влияет на напряжение холостого хода и фактор заполнения.
Рис. 3а, 3б. График зависимости плотности тока от толщины и коэффициента энергоэффективности от толщины
Кривые, изображенные на рисунках 4 (а) и 4 (б), отвечают значениям плотности тока короткого замыкания и энергоэффективности СКСЭ соответственно в зависимости от времени жизни электрона.
Рис 4а, 4б. График зависимости плотности тока от толщины и коэффициента энергоэффективности от
Полученные величины и согласуются с уже описанными ранее в литературе значениями для данного типа СКСЭ [5, 6, 7, 10, 12]. Следовательно, предложенная методика расчета является рабочей и гибкой, поэтому она может быть использована для проектирования и оптимизации СКСЭ.
Предложенная в данной статье методика расчета, позволяющая оптимизировать параметры любого типа СКСЭ, состоит из упрощенной физической модели и численного метода, допускающего решение системы дифференциальных уравнений, полученных из этой модели.
Применение данной методики позволило определить вольтамперные характеристики СКСЭ на основе рутения и рассчитать и . Полученные результаты согласуются с описанными в литературе значениями. Также проанализировано влияние материала полупроводника и красителя и различных технологических параметров на производительность СКСЭ. Продемонстрировано, что оптимальная толщина слоя диоксида титана d = 15 нм, при этом дальнейшее увеличение приводит к незначительному уменьшению производительности СКСЭ. Показано также влияние времени жизни электрона. Значения свыше 40–50 мс не приводят к увеличению производительности СКСЭ.
Таким образом, предложенная в данной статье методика расчета позволяет проводить комплексный анализ производительности СКСЭ и допускает дальнейшее развитие численных методов для проектирования и оптимизации любых типов СКСЭ.
Литература:
- H. S. Jung and J. K. Lee, “Dye sensitized solar cells for economically viable photovoltaic systems,” The Journal of Physical Chemistry Letters, vol. 4, no. 10, pp. 1682–1693, 2013.
- A. Yella, H.-W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011.
- M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C, vol. 4, no. 2, pp. 145–153, 2003.
- J. Ferber, R. Stangl, and J. Luther, “Electrical model of the dye-sensitized solar cell,”Solar Energy Materials and Solar Cells, vol. 53, no. 1–2, pp. 29–54, 1998.
- J. Bisquert and I. Mora-Seró, “Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length,” Journal of Physical Chemistry Letters, vol. 1, no. 1, pp. 450–456, 2010.
- S. Wenger, M. Schmid, G. Rothenberger, A. Gentsch, M. Grätzel, and J. O. Schumacher, “Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction,” Journal of Physical Chemistry C, vol. 115, no. 20, pp. 10218–10229, 2011.
- S. Wenger, M. Schmid, G. Rothenberger, A. Gentsch, M. Grätzel, and J. O. Schumacher, “Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction,” Journal of Physical Chemistry C, vol. 115, no. 20, pp. 10218–10229, 2011.
- J. Ferber, R. Stangl, and J. Luther, “Electrical model of the dye-sensitized solar cell,”Solar Energy Materials and Solar Cells, vol. 53, no. 1–2, pp. 29–54, 1998.
- P. H. Joshi, D. P. Korfiatis, S. F. Potamianou, and K. A. Th. Thoma, “Optimum oxide thickness for dye-sensitized solar cells-effect of porosity and porous size: a numerical approach,” Ionics, vol. 19, no. 3, pp. 571–576, 2013.
- D. Gentilini, A. Gagliardi, and A. D. Carlo, “Dye solar cells efficiency maps: a parametric study,” Optical and Quantum Electronics, vol. 44, no. 3–5, pp. 155–160, 2012.
- Liling G., Zhang S., Guanghui Z., Xing Li, Hanxing L. Synthesis and Characterization of Layered Perovskite-type organic-inorganic hybrids ((R-NH3)2(CH3NH3)Pb2I7), Journal of Wuhan university of technology-mater. Sci. Ed. — 2012
- Silvia C., Edoardo M., Paolo F., Andrea L., Francesco G., MAPbI3.xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties, Chem. Mater. — 2013 — P.4613–4618.