О реализации программного движения алгоритмом управления по принципу обратной связи | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №14 (148) апрель 2017 г.

Дата публикации: 11.04.2017

Статья просмотрена: 24 раза

Библиографическое описание:

Тешаев, М. Х. О реализации программного движения алгоритмом управления по принципу обратной связи / М. Х. Тешаев, З. Б. Орипов. — Текст : непосредственный // Молодой ученый. — 2017. — № 14 (148). — С. 132-135. — URL: https://moluch.ru/archive/148/41160/ (дата обращения: 19.12.2024).



Рассмотрим систему, состоящую из исполнительной электрической машины (ЭМ), механизма передачи вращательного движения с коэффициентом редукции i1 и объектом управления (ОУ). В качестве исполнительного элемента принимается электрическая машина (ЭМ) постоянного тока с независимым возбуждением. Обозначим через момент инерции якоря электрической машины (ЭМ), Jp — момент инерции редуктора. Пусть угол поворота вала электрической машины (ЭМ) (якоря) есть я. Если Мн — момент, прикладываемый к объекту управления (ОУ) со стороны электрической машины (ЭМ) в режиме двигателя, то уравнение вращательного движения, согласно работам Крутько П. Д. [1–4], а также Джолдасбекова У. А. и Молдабекова М. М. [5, 6], можно записать в виде:

,(1)

Где q есть n – мерный вектор столбец обобщенных координат, характеризующих конфигурацию системы; A(q) — матрица инерции подвижных элементов системы; – матрица кориолисовых и центробежных сил инерции, а также сил трения; C(q) — матрица, обусловленная силами тяжести; M – электромагнитный момент, развиваемый электрической машиной (ЭМ).

Систему (1) можно привести к одному уравнению, если использовать кинематическое соотношение и провести пересчет моментов, стоящих в правой части первого уравнения, к второй. Выполняя указанные действия, получим:

(2)

Где

Электрическая часть системы, согласно работам Чиликина М. Г. и Сандлера А. С. [7], Лунца Я. Л. [8], Крутько Л. Д. [1–4], описывается уравнениями:

,

M = KmI,(3)

,

Где L, R1 — индуктивность и активное сопротивление якорной цепи; I, U — ток и напряжение цепи якоря; Kw, Km — коэффициент противо-ЭДС и вращательного момента; кy, y – коэффициент усиления и постоянная времени усилителя; — входное напряжение усилителя.

Вводим электрическую постоянную времени:

Обычно, согласно Крутько П. Д. [1–4]y<<э. Отсюда . Тогда в качестве управляющей функции выступает напряжение и. Умножая первое уравнение (3) на , приведем его к виду:

(4)

Наряду с полной моделью (4) будем использовать далее так же упрощенную модель, в которой не учитываются процессы в якорных цепях исполнительных электрических машин ЭМ. В (4) принимая электрическую постоянную времени э=0, будем иметь:

,(5)

При безынерционном усилителе (у=0) из (2), (3) получим:

(6)

Следуя Крутько Л. Д. [1–4], проблему управления движением сформулируем следующим образом: в начальный момент времени t=0 состояние управляемой системы характеризуется значениями:

qj(o)=qjo,,(j=1,…,n)(7)

Требуется синтезировать такой алгоритм вычисления управляющих напряжений

, (j=1,…,n)(7a)

при котором, управляемая система перемещается за конечное время из точки (7) в окрестность траектории:

qj* = qj(t), (j=1,…,n)(8)

и остается в этой окрестности при последующем движении.

Согласно сформулированным требованиям, следуя Бойчуку Л. М. [9], отклонения j(t)=qj0-qj должны подчиняться в процессе управления дифференциальным уравнениям:

, (j=1,…,n)(9)

Где — положительные константы.

Следуя Крутько Л. Д. [1–4], и на основании (9) заключаем, что программное движение (8) будет реализовано только в том случае, когда ускорения изменяются по закону:

, (j=1,…,n)(10)

Следовательно, искомые законы (7а) формирования управляющих напряжений, которые обеспечивают реализацию программного движения (8), могут быть найдены подстановкой ускорения из (10) в (2). Такая подстановка дает

(11)

Где he – диагональные матрицы

he = diag {h1e, h2e,…,hne}, (e=o,…,1)

Для окончательного решения задачи синтеза, т. е. для определения закона формирования управляющих напряжений, подставим выражение М0 из (11) в соотношение (5):

(12)

Где Cm = diag {Cm1, Cm2,…,Cmn},(m=1,…,2), элементы которой ,

(j=1,…,n)

и откуда

(13)

Таким образом, основу алгоритма управления по принципу обратной связи составляют соотношения (11) и (12). На рис.1 представлена структурная схема замкнутой системы автоматического управления.

Рис. 1.

Здесь

Из рисунка видно, что замыкание контуров приводных электрических машин ЭМ осуществляется по переменным , значения которых используются при вычислении сигналов, C(q) и C2q, а также при определении рассогласований по положению и скорости. На практике вместо производных могут использоваться угловые скорости , (j=1,…,n). Управляющие напряжения для каждой исполнительной электрической машины ЭМ вычисляются согласно (13) по текущим значениям всех управляемых кинематических переменных и скоростей их изменения qj(t),, т. е. управляющее напряжение на отдельный привод формируется с учетом состояния управляемого механизма по всем степеням подвижности.

Из работ Малкина И. Г. [10] и Меркина Г. Д. [11] известно, что для устойчивой реализации этого алгоритма необходимо и достаточно, чтобы корни характеристического уравнения системы (9)

P2+h1p+ho=0,

имели отрицательные вещественные части. Поскольку, по условию, h1,ho — положительные постоянные, необходимые и достаточные условия устойчивости

Rehe<0(e=0,…,1) выполняются для любых h1, ho.

Литература:

  1. Крутько Л. Д. Алгоритмы адаптивного управления исполнительными системами манипуляторов // Изв. АН. СССР. Техническая кибернетика. — 1988. — № 4. – С. 3–13.
  2. Крутько П. Д. Обратные задачи динамики управляемых систем. Линейные модели. М.: Наука, 1983. – 271 с.
  3. Крутько П. Д., Лакота Н. А. Метод обратных задач динамики в теории конструирования алгоритмов управления манипуляционных роботов. Осуществление назначенных траекторий // Изв. АН СССР. Техническая кибернетика. — 1978. № 4. – С. 190–199.
  4. Крутько П. Д., Лакота Н. Я. Метод обратных задач динамики в теории конструирования алгоритмов управления манипуляционных роботов. Задача стабилизации // Изв. АН СССР. Техническая кибернетика. — 1987. — № 3. – С. 127–135.
  5. Джолдасбеков У. А., Молдабеков М. М. Уравнения динамики манипуляционных устройств высоких классов // В сборнике: Математическое моделирование задач теории механизмов и машин. — Алма-Ата. 1987. – С. 3–9.
  6. Джолдасбеков У. А., Бияров Т. Н. Динамика двухзвенного робота — манипулятора // В сборнике: Вопросы теории механизмов и управления машинами. Алма-Ата, 1986. – С. 3–8.
  7. Чиликин М. Г., Сандлер А. С. Общий курс электропривода, М.: Энергоиздат, 1981. – 576 с.
  8. Лунц Я. Л. Введение в теорию гироскопов. — М.: Наука, 1972. – 296 с.
  9. Бойчук Л. М. Метод структурного синтеза нелинейных систем автоматического управления, М.: Энергия, 1972. — 112 с.
  10. Малкин И. Г. Теория устойчивости движения. – М.: Наука, 1966. – 532 с.
  11. Меркин Г. Д. Введение в теорию устойчивости. М.: Наука,1987. – 304 с.
Основные термины (генерируются автоматически): электрическая машина, вращательное движение.


Похожие статьи

Анализ эффективности применения аппаратных устройств с репрограммируемой структурой

Особенности оценки качества и оптимизации алгоритмов симметричного шифрования

О непараметрическом алгоритме управления макрообъектом

Алгоритмы помехоустойчивого кодирования и их аппаратная реализация на основе ПЛИС

Алгоритм многокритериальной оптимизации многоступенчатого планетарного редуктора

О демпфировании вибраций элементов конструкций в области резонанса

Математическое моделирование САР скорости системы «АИН ШИМ – АД» с переменными на основе интегрирующих звеньев

Анализ работы механизма с накопителем энергии с силовым замыканием

Особенности применения статистического анализатора программного кода PVS-Studio в учебном процессе

Методическая схема алгоритма решения задачи по определению устойчивости сети документального обмена системы связи специального назначения

Похожие статьи

Анализ эффективности применения аппаратных устройств с репрограммируемой структурой

Особенности оценки качества и оптимизации алгоритмов симметричного шифрования

О непараметрическом алгоритме управления макрообъектом

Алгоритмы помехоустойчивого кодирования и их аппаратная реализация на основе ПЛИС

Алгоритм многокритериальной оптимизации многоступенчатого планетарного редуктора

О демпфировании вибраций элементов конструкций в области резонанса

Математическое моделирование САР скорости системы «АИН ШИМ – АД» с переменными на основе интегрирующих звеньев

Анализ работы механизма с накопителем энергии с силовым замыканием

Особенности применения статистического анализатора программного кода PVS-Studio в учебном процессе

Методическая схема алгоритма решения задачи по определению устойчивости сети документального обмена системы связи специального назначения

Задать вопрос