В статье особое внимание уделяется проблеме развития математических способностей младших школьников. Предлагается использовать олимпиадные задачи как средство их развития.
Ключевые слова: математические способности, олимпиадные задания, развитие математических способностей
В современной методической системе обучения и успешное овладение знаниями в начальных классах общеобразовательной школы невозможно без интереса детей к учебе. Как широко известно, основной формой обучения в школе является урок. В настоящее время актуально также проведение внеурочных мероприятий, призванных систематизировать и углублять знания школьников. Одна из форм внеклассной работы- является олимпиада по предмету. Она способствует воспитанию познавательного интереса у детей и помогает определить их уровень знаний учителям.
Олимпиада в начальный период обучения занимает важное место в развитии детей. Именно в это время ребенок впервые самостоятельно совершает открытия. Пусть они даже небольшие и как будто незначительные, но в них — ростки будущего интереса к науке.
Олимпиада-это массовая и многоступенчатая форма соревнования, которая охватывает всех учащихся целого региона или части.
Задачи олимпиады следующие:
- Вызвать интерес к предлагаемым вопросам, таким образом расширить кругозор учащихся. А также развить желание к самостоятельному изучению дополнительной литературы по данному предмету (чтение научно-популярной литературы, работа со справочниками и словарями).
- Помочь ребенку раскрыть свои способности, в большей степени утвердиться в собственных глазах и в глазах окружающих.
- Развивать мышление и творческую инициативу ребенка.
Кроме того, олимпиада является одной из форм учебной деятельности, которая может появляться на развитие личностных особенностей учащихся. При этом ученик стремиться к самореализации, у него формируется навыки планирование и самоконтроля, активизируется интеллектуальная деятельность.
Но все же развитие математических способностей — это сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, — только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как свойства изолированные. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем «синдром математической одаренности».
Исследование математических способностей включает в себя и решение одной из важнейших проблем — поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей.
Самое значительное исследование психологов по данной проблеме принадлежит В. А. Крутецкому и изложено в его книге «Психология математических способностей школьников». [10]
В. А. Крутецкий даёт следующее определение математическим способностям: «Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики». Собранный материал В. А. Крутецким позволил ему выстроить следующую общую схему структуры математических способностей в школьном возрасте.
Исходя из всего вышесказанного и основываясь на компонентах (параметрах) математических способностей, выявленных математиками, педагогами и психологами в нашей стране и за рубежом, проведу систематизацию этих параметровпредложенную В. А. Гусевым в его работе «Психолого-педагогические основы обучения математике» [6].
Классифицируя составляющие математических способностей, автор пришёл к выводу, что, прежде всего их можно распределить по двум основным блокам: в первый блок входят общие характеристики мышления или умственной деятельности (формулировки этих качеств личности формально не связаны ни с какой специальной математической деятельностью); ко второму блоку относятся параметры математических способностей, непосредственно связанные с математической деятельностью учащихся. Совершенно ясно, что эти параметры следует идентифицировать по уровню их сложности, продвинутости и т. д.
Итак, рассмотрим один из возможных вариантов классификации составляющих (параметров) математических способностей младших школьников.
Оценивая предложенную классификацию параметров математических способностей, можно сделать следующие выводы.
- Отличительной чертой данной классификации является ее направленность на целостное формирование личности каждого школьника, и в этой связи ее многогранность.
- Бросается в глаза большое пересечение указанных параметров с общими целями обучения математике, сложность этих взаимосвязей. Важно отметить, что фундаментом во всем этом многообразии являются мыслительные процессы, это выдвигает на первый план процессы формирования приемов мыслительной деятельности.
- Построенная классификация играет немаловажную роль
- в диагностике параметров математических способностей учащихся и позволяет дифференцировать их по уровням владения теми или иными приемами мыслительной деятельности.
После выявленных компонентов рассмотрим несколько примеров по реализации олимпиадных задач и заданий как способ развития математических способностей у младших школьников. [1]
Одним из таких упражнений на уроке математике или на внеурочной деятельности может быть использованы такие упражнения как:
− Самое маленькое целое число, которое делится на 2, 3 и 4 равно.
− На выставке кошек 3 белых котёнка- Пыжик, Лучик и Чемпион- заняли три первых места. Пыжик занял не первое и не второе место. Лучик- не второе место. Какие места заняли каждый котёнок?
− Средний возраст одиннадцати футболистов команды-22 года. Во время матча один из футболистов был удалён с поля. После этого средний возраст тех, кто остался на поле, стал 21 год. Сколько лет было футболисту, удалённого с поля?
− В хозяйстве Попа было 13 работников. Каждый работник съедал в день каравай хлеба. Поп принял на работу Балду.
Живет Балда в поповом доме,
Спит себе на соломе,
Ест за четверых,
Работает за семерых.
Поп прогнал лишних работников. Сколько караваев хлеба стал Поп экономить ежедневно?
− Расшифруй комбинацию кодового замка, если:
- Третье цифры на 3 больше, чем первые.
- Вторая цифра на два больше, чем четвертая.
- В сумме все цифры дают числа 17.
- Вторая цифра 3.
− Расположите 25 чисел, от 1 до 25, в квадрате из 25 клеток так, чтобы в каждой строке, в каждом столбце, а так же по обеих диагоналям квадрата получились одинаковые суммы.
− Проведите внутри прямоугольника 2 отрезка так, чтобы получились 4 треугольника и 1 четырехугольник.
− Деревянный кубик, с ребрами, равными 3 дециметра, распилили на кубики с объемом 1 кубический дециметр. Сколько среди получившихся кубиков таких, которые окрашены с трех сторон?
− В шесть часов утра в воскресенье гусеница начала всползать на дерево. В течение дня, т. е. до 18 часов, она всползала на высоту 5 м, а в течение ночи спускалась на 2 м. В какой день и час она будет на высоте 9м?
Под математическими способностями следует понимать специальные особые способности, которые необходимы для успешного выполнения математической деятельности. Математические способности являются не единым образованием, а имеют сложную многогранную структуру. Успешность математической деятельности зависит не от отдельно взятой способности, а от комплекса способностей. Математическая одарённость предполагает наличие определённых природных предпосылок и проявляется только в творческой деятельности. Однако не следует забывать, что каждый человек (ученик) обладает в определенной мере математическими способностями которые чаще всего раскрываются на олимпиадах. Оценить и развить эти способности — задача педагогов.
Литература:
- Белицкая Н. Г., Орг А. О. Школьные олимпиады начальная школа 2–4 классы,2-е изд. – М.: Айрис- пресс.2006.
- Ведерникова Т. Н., Иванов О. А. Интеллектуальное развитие школьников на уроках математики // Математика в школе — № 3. – 2002.
- Венгер Л. А. Педагогика способностей. — М., 1973.
- Выплов Ю. Развитие мыслительной деятельности учащихся. // Математика. — 2003 — № 24.
- Гусев В. А. Психолого-педагогические основы обучения математике. – М.: Вербум-М: Академия, 2003.
- Зубова С. П., Лысогорова Л. В. Интеллектуальная игра как условие развития старших дошкольников. В сборнике: Детство как антропологический, культурологический, психолого-педагогический феномен Материалы II Международной научной конференции. 2016. С. 188–193.
- Зубова С. П., Лысогорова Л. В. Методические аспекты обучения школьников решению задач с позиции теории величин. Педагогическое мастерство и педагогические технологии. 2016. № 1 (7). С. 155–157.
- Зубова С. П., Лысогорова Л. В. Причины вычислительных ошибок младших школьников и пути их предупреждения. Педагогика городского пространства: теория, методология, практика. Сборник трудов по материалам Всероссийской научно-практической конференции. Т. А. Чичканова (ответственный редактор). Самара, 2015. С. 284–288.
- Игнатьев Е.И Математическая смекалка. Занимательные задачи, игры, фокусы, парадоксы. – М.: Омега,1994.
- Крутецкий В. А. Психология математических способностей школьников. М.: Просвещение, 1968.
- Лысогорова Л. В. Закономерности процесса обучения математике как основа реализации принципа быстрого продвижения обучающихся в развитии. Молодой ученый. 2016. № 5–6 (109). С. 68–70
- Лысогорова Л. В. Технология подготовки будущего учителя к развитию математических способностей младших школьников. Автореферат диссертации на соискание ученой степени кандидата педагогических наук / Самарский государственный педагогический университет. Самара, 2007.
- Максимова Т. Н. Олимпиадные задания по математике, русскому языку, и курсу «окружающему миру».1–2 классы. – М.: «Вако», 2011.
- Чуракова Р. Г. Математика. Школьная олимпиада, тетрадь для внеурочной деятельности.2 класс. – М.: Академкнига/учебник. 2014.
- Шадриков В. Д. О структуре познавательных способностей. // Психологический журнал — 1985 — № 3.