В статье автор предлагает собственную систему взглядов на решение проблемы организации самостоятельной работы учащихся при изучении действительных чисел в курсе математики.
Ключевые слова: концепция, самостоятельная работа учащихся, школьный курс математики, действительные числа, набор задач
Проблема углубления знаний и формирования требуемых умений и навыков при выполнении самостоятельных работ учащихся общеобразовательных школ актуализировала поиск соответствующих методик обучения, в которых именно самостоятельная работа является базовым стержнем быстрого накопления новых знаний.
Решение проблемы повышения эффективности самостоятельных занятий учащихся актуально еще и тем, что формирование такого личностного качества, как «самостоятельность освоения новых знаний» позволит культивировать у обучаемого интерес к быстрому обновлению собственных знаний и повышению их уровня владения. Это особенно важно в условиях информатизации, где информация имеет свойство быстрого накопления и обновления.
О необходимости формирования устойчивых знаний учащихся общеобразовательной школы по различным предметам акцентировано в [1], а, на важности самостоятельной подготовки к сдаче основного государственного экзамена сконцентрировано внимание в [2], где размещены контрольные измерительные материалы, позволяющие оценивать результаты проведения государственного экзамена по общеобразовательным предметам.
К сожалению, анализ сформированности навыков самостоятельных занятий в общеобразовательной школе при изучении на уроках математики темы «Действительные числа» показал, что их уровень очень низкий. Не развиты такие важные факторы, как «самостоятельность» принимаемых решений, «самоанализ и самоконтроль», позволяющий оценивать результаты собственной деятельности при решении конкретной задачи. На минимальном уровне сформированы навыки самостоятельной работы с предложенной дополнительной литературой.
Можно констатировать тот факт, в настоящее время достаточно мало методических разработок и рекомендаций по формированию навыков самостоятельной работы учащихся, что и предопределило выбор темы научной статьи [3].
Ниже представлено авторское видение решения вышеизложенной проблемы, которое было сформировано в процессе накопления личных наблюдений при построении учебного процесса в общеобразовательном учебном заведении и из личного опыта общения с обучающимися.
Общеизвестно, что концепция — это определенный способ понимания определенного явления, директивная идея для его систематического обсуждения [4].
Из энциклопедии известно, что концептуальный подход — предполагает предварительную разработку концепции исследования, которая включает комплекс ключевых положений, определяющих общую направленность изыскания [5].
Концепция в педагогике — это основополагающая идея средств педагогической коммуникации, позволяющих эффективно проводить процесс обучения.
Вопросы формирования навыков самостоятельной работы учащихся в общеобразовательной школе неоднократно рассматривались в работах А. Д. Александрова [6], И. К. Андронова [7], И. С. Бабикорва [8], А. Д. Байдак [9] и других авторов [10–12].
Авторская концепция опирается на идеи дивергентно модульного подхода, раскрытые в работе Глуховой Л. В. [13]
Концепция организации самостоятельных занятий учащихся при изучении математики на примере темы «Действительные числа» включает:
основополагающий замысел — формирование и развитие навыков самостоятельной работы учащихся должно базироваться на интеграции имеющейся общей математической грамотности и тезауруса терминологии «действительные числа» в различных ситуациях, с учетом постепенно расширяющего уровня знаний и углубления уровня сложности задач.
Идея состоит в подборе проблемного поля типовых задач, на основе которых возможно быстро сформировать рефлексию математической обработки действительных чисел.
Способ построения системы средств обучения состоит в выборе системы самостоятельного дополнительного образования, модульного авторского курса заданий по математике из темы «действительные числа», в котором каждый из модулей формирует определенные дидактические единицы знаний учащихся с возможностью дивергенции изучаемых понятий и определений и последующей рефлексией типовых решений в сферу деятельности учащегося.
Педагогическая стратегия заключается в устойчивой последовательной ориентации учителя на цель. В нашем случае это последовательность действий учителя, направленная на формирование методики самостоятельных занятий учащихся по математике общеобразовательной школы.
Проблемное поле типовых задач представлено системой упражнений для подготовки к государственной итоговой аттестации учащихся девятых и одиннадцатых классов по теме «Действительные числа».
Подбор задач и упражнений и их ранжирование по уровню сложности было выполнено автором с учетом рекомендаций [14–17].
На рисунке (рис.1) в качестве примера приведена структура задания для аттестации учащихся девятых классов по математике.
Задание 1: Числа ивычисления |
|
Требования, проверяемые заданиями: — выполнять, сочетая устные и письменные приёмы, арифметические действия с рациональными числами, сравнивать действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; вычислять значения числовых выражений; переходить от одной формы записи чисел к другой; — округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять прикидку результата вычислений, оценку числовых выражений; — изображать числа точками на координатной прямой. |
|
Элементы содержания, проверяемые заданиями |
Квадратный корень из числа. Нахождение приближенного значения корня |
Понятие об иррациональном числе. Десятичные приближения иррациональных чисел. Действительные числа как бесконечные десятичные дроби |
|
Сравнение действительных чисел |
|
Задание 2: Алгебраические выражения |
|
Требования, проверяемые заданиями: — составлять буквенные выражения и формулы по условиям задач, находить значения буквенных выражений, осуществляя необходимые подстановки и преобразования; — выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями; — выполнять тождественные преобразования рациональных выражений; — применять свойства арифметических квадратных корней для преобразования числовых выражений, содержащих квадратные корни. |
|
Элементы содержания, проверяемые заданиями |
Алгебраическая дробь. Сокращение дробей |
Рациональные выражения и их преобразования |
|
Свойства квадратных корней и их применение в вычислениях |
|
Рис. 1. Фрагмент из системы упражнений для подготовки к государственной итоговой аттестации учащихся девятых классов по теме «Действительные числа
При формировании системы упражнений были использованы принципы, рекомендованные в работе Л. М. Фридман [18, с.121], и в работе М. Моро [19].
Концептуальный подход был апробирован при подготовке к сдаче итоговой аттестации учащихся в 2016 году, и показал хорошие результаты. Опрос подтвердил, что большое значение оказало формирование уровня самостоятельной работы учащихся при освоении ими темы «действительные числа».
Таким образом, рекомендации по формированию самостоятельной работы обучающихся [20], собственный опыт работы с учащимися на уроках математики, внедренный авторский концептуальный подход, позволил автору получить положительный опыт формирования навыков самостоятельной работы учащихся общеобразовательной школы.
В настоящее время работа автора по формированию навыков самостоятельных занятий учащихся продолжается.
Литература:
- Федеральный государственный стандарт общего основного образования / М-во образования и науки Российской Федерации. — М.: Просвещение, 2010. — 50 с.URL: http://минобрнауки.рф/документы/543 (дата обращения 14.11.2015).
- Федеральный институт педагогических измерений. — URL: http://fipi.ru/oge-i-gve-9/demoversii-specifikacii-kodifikatory (дата обращения 07.12.2015).
- Аксенов, А. А. Теория обучения логическому поиску решения школьных математических задач: дис. докт. пед. наук: 13.00.02 / Аксенов Андрей Александрович. — М., 2010. — 462 с.
- Философский энциклопедический словарь. — URL: // http://terme.ru/slovari/filosofskii-enciklopedicheskii-slovar1.html (дата обращения 30.03.2017)
- Большая советская энциклопедия: В 30 т. / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1969.
- Александров, А. Д. Математика, ее содержание, методы и значение [Текст] / Под ред. Александрова А. Д., Колмогорова А. Н., Лаврентьева М. А. — М.: Изд. Академии наук СССР, 1956. — т.3–336 с.
- Андронов, И. К. Математика действительных и комплексных чисел [Текст] / И. К. Андронов. — М.: Просвещение, 1975. — 158 с.
- Бабикова И. С. Изучение темы «Числовые множества и понятие действительного числа» / И. С. Бабикова. — URL:http://festival.1september.ru/articles/583085/ (дата обращения 28.02.2016).
- Байдак В. А. Теория и методика обучения математики: Учебное пособие [Текст] / В. А. Байдак. — М.: Флинта, 2011. — 264 с.
- Буряк, В. К. Самостоятельная работа учащихся / В. К. Буряк. — М.: Просвещение, 1984.
- Василевский А. Б. Обучение решению задач по математике. Минск, 1988. — 211с.
- Вечтомов, Е. М. Методика изучения систем действительных чисел [Текст] / Е. М. Вечтомов, В. В. Чермных, Д. В. Широков // Вестник Вятского государственного гуманитарного университета.– 2012. — № 2–3. — С. 57–62.
- Глухова Л. В. Технология компьютерной подготовки специалистов экономического профиля в колледже /Л. В. Глухова. авторф. дис. на соискание ученой степени к. п.н. Тольятти. 1998.- 22с.
- Глейзер Г. Изучение действительных чисел. Лекция 3 [Текст] / Г.Глейзер // Еженедельное приложение к газете «Первое сентября». — 1995. — № 3 (96). — С. 15–16.
- Григорьева Н. Н. Урок алгебры по теме «Действительные числа» / Н. Н. Григорьева, В. А. Трифанова. — URL: http://festival.1september.ru/articles/661213/ (дата обращения 15.02.2016).
- Гусев, В. А. Обзорная лекция по теме «Действительные числа» [Текст] / В. А. Гусев, Н. Б. Гусева, Г. В. Сычева // Научно-практический журнал «Математика для школьников». — 2009. — № 3. — С. 11–19.
- Колягин Ю. М., Оганесян В. А. Математические задачи как средство обучения и развития учащихся. М.: Просвещение, 1977. — 297с.
- Фридман Л. М. Теоретические основы методики обучения математике: Учебное пособие [Текст] / Л. М. Фридман. — М.: Едиториал УРСС, 2005. — 248 с.
- Моро М. И. Самостоятельная работа учащихся на уроках // М.: АПДН РСФСР, 1983.- 150 с.
- Самостоятельная деятельность учащихся при обучении математике (формирование умений самостоятельной работы): Сб. статей / Сост. С. И. Демидова. Л. О. Денищева. — М.: Просвещение, 1985.