На сегодняшний день продукция нефтехимического комплекса Узбекистан высоко энерго- и материалоемка, а по затратам тепловой энергии занимает первые позиции в промышленности страны. Нефтехимические предприятия требуют около 4,1 % добываемого природного топлива и 7,6 % электроэнергии от всего потребляемого объема по стране. Решение проблемы снижения энергоемкости нефтехимических производств может заключаться в максимальном вовлечении побочных энергоресурсов предприятия в его общий.
Сэкономив одну единицу энергии на стадии потребления, можно добиться экономии от 3 до 15 эквивалентных единиц природного топлива на стадии добычи, то есть от 778,2 до 5508 тыс. т.у.т. в год [1]. Поэтому появляется потребность в эффективных энергосберегающих мероприятиях, направленных на утилизацию вторичных энергоресурсов (ВЭР). Выделяются следующие основные ВЭР нефтехимических производств:
– теплота охлаждаемых продуктов или полупродуктов производства;
– теплота, отведенная от охлаждаемых конструкций (компрессоров, печей и т. п.), в том числе теплота химических реакций, отведенная через элементы конструкций реакторов или водяные рубашки;
– теплота обратной сетевой воды или парового конденсата;
– теплота оборотной воды градирен;
– теплота отработавших газов котлов и печей.
Так как температура жидких теплоносителей редко превышает 150°С, а газообразных-350°С, то все вышеуказанные виды ВЭР относятся к низкопотенциальным. Такие ВЭР не соответствуют требованиям, выдвигаемым высокотемпературными технологиями крупнотоннажных нефтехимических производств и практически полностью сбрасываются в атмосферу. С целью повышения температурного потенциала ВЭР до необходимого уровня применяют теплонасосные установки (ТНУ).
Энергоустановки на базе ТНУ имеют следующие преимущества:
– снижение себестоимости вырабатываемой теплоты в отличие от топливосжигающих источников энергоресурсов;
– достижение экономии топливо-энергетических ресурсов;
– отсутствие или сокращение вредных выбросов, в том числе термического загрязнения окружающей среды;
– сокращение потерей при транспортировке, расходов на содержание и строительство теплотрасс по причине близкого расположения источника теплоты к потребителю.
В настоящее время на нефтехимических предприятиях стало возможным расширение области применения ТНУ за счет внедрения комбинированных ТНУ с отпуском от одной установки теплоносителей нескольких параметров.
Проанализируем термодинамическую и энергетическую эффективности трех видов ТНУ парокомпрессионного типа (во всех установках рабочим агентом является высокотемпературный фреон R133а).
- ТНУ многоцелевого назначения для отпуска теплоты на тепловые нужды отопления и горячего водоснабжения (рисунок 1).
Рис. 1. Схема теплового насоса, вырабатывающего теплоноситель двух уровней: КМ-компрессор; К-конденсатор; ДР-дроссельный вентиль;И-испаритель; СО-система отопления; СГВ-система горячеговодоснабжения; ТА-теплообменник
Данная типовая схема ТНУ позволяет получать в отопительный период теплоносители двух температурных уровней: t1=55–650С (нагрузка горячего водоснабжения) и t2=950С (отопительная нагрузка), а в летний период работает в режиме холодильной машины и отпускает захоложенную воду (хладоноситель) t=120С.
Принцип работы ТНУ на рисунке 1 установки состоит в следующем. В конденсатор поступают пары фреона, которые предварительно были сжаты в компрессоре. Там они охлаждаются и отдают теплоту воде. Вода, нагретая до t=950С, поступает в систему отопления. В теплообменнике охлажденные после конденсатора пары фреона доохлаждаются, а вода, нагретая до температуры t=650С, идет на нужды горячего водоснабжения (ГВС). Затем переохлажденный фреон, поступая в дроссельный вентиль, дросселируется до давления испарения и в жидком состоянии поступает в испаритель, в котором кипит за счет теплоты
ВЭР (t=400С).
Согласно анализу, использование такой ТНУ не может широко использоваться в нефтехимической отрасли из-за невысокой температуры получаемого теплоносителя; а из-за снижения нагрузки ГВС и отсутствием отопительной нагрузки в летний период использование теплоты конденсации фреона становится почти невозможным (в связи с тем, что в нефтехимической отрасли высока доля нагрузки по технологическому пару с температурой t=140–2000С, а включение данной ТНУ в систему покрывает с только нагрузку отопления и ГВС [2].
- ТНУ для комплексного тепло- и хладоснабжения (рисунок 2).
Рис. 2. Установка комплексного тепло- и хладоснабжения. Обозначения аналогичны приведенным на рисунке 1
Такая ТНУ предназначена для обеспечения производства охлажденной водой (t=120С), циркулирующей в замкнутой системе охлаждения от нагретых конструкций с одновременным получением горячей воды с температурой до 950С.
Принцип работы установки следующий. В конденсатор К поступают пары фреона, сжатые в компрессоре КМ, в котором они конденсируются. От конденсатора отводится вода с температурой t=950С. Влажные пары фреона после конденсатора дросселируется и направляются в испаритель И. за счет отводимой теплоты от нагретой воды в испарителе происходит процесс кипения хладагента, возвращаемой из системы охлаждения, охлаждая ее t=120С, а затем снова поступает на линию всасывания компрессора КМ.
Несмотря на возможность решить проблему тепловых нагрузок, связанных с сезонностью, данная установка также имеет множество недостатков как ТНУ на рис. 1 [3].
- Каскадная ТНУ для отпуска пара промышленных параметров с применением двух и более рабочих агентов с различными теплофизическими характеристиками (рисунок 3).
Рис. 3. Схема каскадной теплонасосной установки: ИКД-испарительно-конденсаторный аппарат. Обозначения аналогичны приведенным на рисунке 1
Структура каскадной ТНУ открытого типа предполагает наличие двух контуров, связанных между собой с помощью узла ИКД. Хладагент R133а циркулирует в нижней ветви, вода — в верхней. Испаряясь, фреон отбирает теплоту у вторичного источника теплоты с температурой около 400С, после чего в компрессоре Км1 происходит сжатие паров фреона, которые поступают в
ИКД с температурой 105–1100С. Охлаждаясь, они отдают теплоту питательной воде, после чего компрессором Км2 отсасывается водяной пар, а в нем температура повышается до 1500С. Пар с такой температурой и давлением 0,45МПа отправляется на технологические нужды потребителю, а затем в виде конденсата отработанный пар возвращается в систему возврата и сбора конденсата. Каскадная установка наиболее выгодна для нефтехимической промышленности, так как вырабатывает пар с подходящими параметрами (давление 0,45–0,6 Мпа).
Рассмотрим энергетическую и термодинамическую эффективности установок на 1000 кВт отпущенной теплоты и холода (таблица 1).
Таблица 1
Расчетные показатели энергетической итермодинамической эффективности установок
|
q0,кДж/кг |
qкд,кДж/кг |
lкм,кДж/кг |
G, кг/час |
|
Q0, кВт |
B, т.у.т |
Установка 1 |
|||||||
Режим отопления (зимой) |
194,6 |
253,82 |
55,09 |
5,15 |
4,6 |
800,82 |
32,96 |
Режим отопления (летом) |
202,23 |
272,56 |
78,03 |
4,68 |
3,5 |
745,21 |
25,37 |
Установка 2 |
|||||||
Комбинированная установка |
202,23 |
272,56 |
78,03 |
4,68 |
3,5 |
745,21 |
25,37 |
Установка 3 |
|||||||
Каскадная установка (вода/фреон R133a) |
62,74 |
104,92 |
55,06 |
10,62 |
3,5 |
595,11 |
21,28 |
Принятые обозначения: q0-удельное количество тепла, подведенное в испарителе к хладагенту, кДж/кг; qкд-удельная тепловая нагрузка конденсатора, кДж/кг; lкм-удельная работа сжатия компрессора, кДж/кг; G-расход хладагента, кг/с; μ-коэффициент преобразования энергии; В-экономия топлива, т.у.т. Определяющий эффективность преобразования энергии коэффициент μ=qкд/lкм для первых двух установок выше, чем для
каскадной. Происходит это из-за разницы в температурных уровнях температуры ВЭР и температуры конденсации/испарения (с 40 до 950С)/(с 40 до120С). Преимущество каскадной ТНУ — возможность покрывать нагрузку на пар технологических параметров круглый год, что для нефтехимического предприятия является самым важным фактором. Выход ВЭР на таких предприятиях круглогодичен, а вследствие отсутствия необходимости в горячей воде в летний сезон использование установок 1 и 2 в такой период экономически нецелесообразно. Поэтому каскадные установки в нефтехимии наиболее эффективны.
Литература:
- Назмеев Ю. Г., Конахина И. А. Организация энерготехнологических комплексов в нефтехимической промышленности. М.: Издательство МЭИ, 2001. 364 с.
- Мартынов А. В., Яворовский Ю. В. Использование вторичных энергоресурсов (ВЭР) на предприятиях химической промышленности // Химическая промышленность. 2000. № 4. С. 3.
- Везиришвили О. Ш., Меладзе Н. В. Энергосберегающие теплонасосные системы тепло- и хладоснабжения. М.: Издательство МЭИ, 1994. 79 с.