Составлены новые композиции, состоящие из полиэтилена низкой плотности (1), перлита (2) (месторождения Пойли Агстафинского района Азербайджана) и соолигомеров 2-пропенилфенола с малеиновым ангидридом (3). Композиционный материал, полученный вальцеванием смеси, состоящий из 36–38 % (1), 54–57 % (2) и 5–10 % (3) обладает прочностью при разрыве 14,3–15,7 МПа.
Ключевые слова: полиэтилен, перлит, олигомерный модификатор, композиты
The physical-mechanical properties of composites of polyethylene-matrix, filler (perlite) and modifier of various compositions have been shown that the strength of composites in all depend on nature of modifier, matrix and used filler.
Key words: polyethylene, perlite, oligomer modifier, composites
Композиционные материалы, полученные на основе крупнотоннажных полимеров, различных наполнителей и олигомерных связующих, находят разнообразное применение [1].
При использовании в качестве основы полиолефинов, в частности полиэтилена, необходимо принимать во внимание степень его кристалличности, прочность связей в основной цепи, наличие разветвлений и др. факторы, от которых в значительной степени зависят протекание механохимического синтеза при вальцевании, экструзии и др. методах переработки [2]. Под влиянием значительных тепловых и механических воздействий может происходить деструкция полимера, сопровождающаяся изменением молекулярной массы, молекулярно-массового распределения, степени разветвленности макромолекул и др. показателей.
Кроме того, для достижения высоких эксплуатационных показателей материалов важное значение имеет подбор аппретирующих добавок и правильный выбор наполнителей с определенной степенью дисперсности с учетом возможных синергетических эффектов [3–6].
В настоящей статье приводятся результаты наших исследований по разработке композиционных материалов Пойли, Агстафинского района Азербайджана на основе полиэтилена низкой плотности, двойных соолигомеров 2-пропенилфенола с малеиновым ангидридом и наполнителя – (природного материала) перлита из месторождения. Последний представляет собой смесь, состоящую из SiO2 (66,82 %), Al2O3 (13,23 %), K2O (3,61 %), Na2O (3,36 %), MgO (1,47 %), FeO (3,27 %) и др. оксидов.
Использованные в работе соолигомеры были синтезированы блочной инициированной соолигомеризацией 2-пропенилфенола с малеиновым ангидридом (температура 800С, инициатор — Диниз, время реакции 3 часа). Mw=4486, Mn=630(Mw/Mn=6,9) (данные получены хроматографированием соолигомеров на гель-хроматографе «Kovo» (Чехия), неподвижная фаза — SeparonSGX, эльент – ДМФА) [6]. Независимо от соотношения исходных мономеров имеет место образование соолигомеров со строго чередующимися звеньями 2-пропенилфенола и малеинового ангидрида, что находится в соответствии с литературными данными по соолигомеризациивинильных мономеров с малеиновым ангидридом.
Рис. 1. Схема реакции
Композиции готовили смешением расплавленного полиэтилена (марки 15803–020) с наполнителем (перлитом) и соолигомером на лабораторных вальцах при температуре 130–1400С в течение 15–20 мин, до получения гомогенной массы.
Вначале были проведены лабораторные испытания композиций, состоящих только из ПЭ и наполнителя. Их соотношение составляло 90:10, 80:20, 70:30, 50:50 и 30:70. Было установлено, что с увеличением содержания наполнителя в смеси с ПЭ от 10 до 30 % не оказывает существенного влияния на прочностные свойства полученных композиций, в то время, как значения относительного удлинения, как и следовало ожидать, падают.
Далее были проведены испытания композиций, состоящих из ПЭ и наполнителя при их вышеуказанных соотношениях, но дополнительно содержащих в небольших количествах соолигомеры (5 и 10 %).
Были составлены также композиции, состоящие из ПЭ и соолигомеров, т. е. в которых наполнитель отсутствовал.
Прочностные свойства составленных композитов определяли на разрывной машине ЗИП (модель МР 0.5.1).
Полученные результаты приводятся в табл. 1.
Таблица 1
Результаты испытаний составленных новых композиций
№ |
Соотношение,% мас. ПЭ: наполнитель: соолигомер висходной композиции |
Относительное удлинение,% |
Предел прочности при растяжении Мпа (σ) |
ПТР г/10 мин |
1 |
100:0:0 |
600 |
11,3 |
|
2 |
90:10 |
90 |
10,2 |
|
3 |
80:20 |
80 |
11,2 |
|
4 |
70:30 |
64 |
9,6 |
|
5 |
60:40 |
39 |
13,1 |
0,31 |
6 |
50:50 |
28 |
10,5 |
0,26 |
7 |
40:60 |
26 |
14,6 |
0,22 |
8 |
30:70 |
17 |
15,1 |
|
Наполнитель: ПЭ: Соолигомер |
||||
9 |
95: 0: 5 |
172 |
8,6 |
0,25 |
10 |
90:0:10 |
74 |
8,3 |
|
11 |
80:15:5 |
63 |
9,6 |
|
12 |
70:20:10 |
55 |
10,5 |
|
13 |
57:38:5 |
47 |
12,6 |
0,13 |
14 |
54:36:10 |
27 |
11,6 |
0,11 |
15 |
38:57:5 |
21 |
15,7 |
|
16 |
36:54:10 |
17 |
14,3 |
|
Как видно из представленных в табл.1 данных, существенное влияние на прочностные свойства композиции оказывает наличие в нейсоолигомеров 2-пропенилфенола с малеиновым ангидридом (композиции 4–6). Предел прочности при растяжении составляет 12,1–12,5 Мпа (при относительном удлинении 17 %). Композиции, состоящие только из ПЭ и наполнителя (при их соотношении 90–70:20–30) по своим прочностным свойствам близки с ПЭ без наполнителя.
Однако при увеличении количества перлита до 60–70 % наблюдается значительное улучшение прочностных свойств и снижение относительного удлинения.
Из этих результатов проведенных сравнительных исследований видно, что при включении в состав композиции ПЭ-наполнитель дополнительно модификатора (соолигомеров) достигаются достаточно высокие результаты по устойчивости к растяжению.
Следует отметить, что модифицирующие добавки (обычно соединения с полярными группами) в процессе вальцевания составленной композиции участвуют в так называемых «механико-химических синтезах». Очевидно, что при этом происходит частичная деструкция полиэтиленовых цепей и участие модификатора в реакции «сшивки» цепей. При включении в композицию 5 % модификатора (что составляет 4,8 % в смеси) происходит образование относительно редкой сетки. При увеличении его количества до 10 % (в композиции ~9,5 %) частота сетки выше, предел прочности при этом достигает 12,1–12,5 Мпа (относительное удлинение составляет 17 %). По-видимому, в реакции могут частично участвовать и винилиденовые группы обычно имеющиеся в ПЭ.
Общеизвестно, что при вальцевании например, каучуков на холоду и даже при простом многократном сжатии под прессом в присутствии малеинового ангидрида наблюдается присоединение последнего к полимерным цепям, при которых возможны, как внутримолекулярные, так и межмолекулярные превращения [7].
Очевидно, что при взаимодействии ПЭ с соолигомером 2-пропенилфенола с малеиновым ангидридом можно ожидать образования сшитых структур путем участия звеньев малеинового ангидрида с макрорадикалами, образующимися вследствие частичной механодеструкции [8].
Таким образом, структура и прочность образующихся композитов будет во многом зависит от природы модификатора, полимера и наполнителя.
Полученные композиционные материалы рекомендуются при изготовлении различных изделий в промышленности и в быту.
Литература:
- Филиппов П. В., Крюкова И. М. // Современные техника и технологии: Труды VI Межд. научно-практ. Конф. Молодых ученых, Томск, 2000, с. 331–333.
- Джафаров В. Д. Исследование влияния наполнителей на надмолекулярную структуру и свойства полиэтиленовых композиций. // Процессы нефтехимии нефтепереработки, 2005, с. 63–80.
- Джафаров В. Д. Исследование свойств наполненных полиэтиленовых материалов, аппретированных сополимерами малеинового ангидрида. // Высокомолекулярные соединения, 2006, с. 71–79.
- Джафаров В. Д., Эфендиев А. А. Синергетический эффект смесей минеральных наполнителей в композициях на основе аппретированного полиэтилена высокого давления. // Пластические массы, 2007, с. 28–30.
- Джафаров В. Д., Бабаева Г. Р., Велиев И. В. Создание высоконаполненных композиций на основе полиэтилена низкой плотности, каолина и полимерного аппрета. // Вестник Азерб. Инженерной Академии, 2013, с. 83–86.
- Магеррамов А. М., Байрамов М. Р., Азимова Н. В. Получение соолигомеров 2-пропенилфенола с малеиновым ангидридом и исследование их превращений с аминами в качестве ингибиторов коррозии стали. // Прикладная химия, 2014, т. 87, вып. 4, с. 463–467.
- Барамбойб Н. К. Механохимия высокомолекулярных соединений, М., изд. Химия, 1971, с. 151–152.
- Гуль В. Е. Структура и прочность полимеров, М., изд. Химия, 1071, с. 340.