Работа посвящена анализу особенностей распространения информации в высокочастотных mesh-сетях. Рассмотрен алгоритм работы кольца с маркерным доступом.
Ключевые слова: беспроводные сети, распространение информации, электромагнитная волна.
В настоящее время сетевые технологии переживают небывалый рост. Число пользователей интернета постоянно увеличивается. Повсеместно организации разного рода и масштаба организуют свои локальные сети как для внутреннего пользования, так ради многопользовательского выхода в Интернет. Даже государственная политика в сфере предоставления государственных услуг и информирования граждан стала ориентирована на дистанционную работу с гражданами посредством сети Интернет [1].
Ячеистая топология (англ. Mesh Topology) — сетевая топология компьютерной сети на принципе ячеек, в которой каждая рабочая станция сети соединяется с несколькими другими рабочими станциями этой же сети с возможным принятием на себя функций коммутатора для других рабочих станций. Характеризуется высокой отказоустойчивостью, сложностью настройки и, для проводных сетей, переизбыточным расходом кабеля. Каждый компьютер имеет множество вероятных путей соединения с другими компьютерами. Обрыв кабеля не приведёт к потере соединения между двумя компьютерами. Получается из полносвязной путем удаления некоторых возможных связей. Эта топология допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей. Беспроводные ячеистые сети обеспечивают устойчивую связь среди многих сетевых узлов. Высокочастотное радио работает в несущих частотах, которые потенциально распространяются к любой точке в мире через одно или большее количество отражений от ионосферы.
Однако такая передача данных подвергается сложным взаимодействиям среди солнечных и наземных сред, и возможность установи связь между произвольными парами сетевых точек может быть ненадежной в разных условиях приемопередачи [1]. Усовершенствованная обработка сигналов позволяет справиться с исчезновением сигнала и межсимвольными помехами высокочастотных каналов, увеличить скорость передачи. Протоколы управления подключением автоматизировали задачу нахождения используемых частот.4) Протоколы каналов передачи данных адаптируются к изменяющимся условиям канала и поддерживают пропускную способность близкой к максимальной [2]. Ячеистые сети включают интересный класс беспроводных сетей со следующими характеристиками:
- Размещение узлов произвольно.
- Используются всенаправленные антенны.
- Маршрутизация — узлы должны быть готовы передать трафик друг для друга. Некоторые узлы могут быть соединены с фиксированной инфраструктурой, но фиксированная инфраструктура не основное соединение среди узлов ячеистой сети.
Цель ячеистой сети состоит в том, чтобы совместно использовать соединения с фиксированной инфраструктурой со всеми задействованными узлами.
Мобильность достаточно низкая, и маршрутизация может быть оптимизирована для пропускной способности, а не для обнаружения и восстановления неработающих подключений узлов сети [3]. Высокочастотная ячеистая сеть может быть сформирована, включая протокол маршрутизации или с радиосетью автоматического установления связи или с одним или более узлами фиксированной частоты для передачи маркера. Каждое маркерное кольцо обычно воздействует на единственную частоту. Каждое кольцо с маркерным доступом HF работает следующим образом:
- Узел может передавать данные, только тогда он содержит маркер.
- Узел может передавать данные установленное максимальное количество времени, прежде чем он будет передан маркер другому узлу в кольце.
- Все узлы в кольце, соединены со всеми другими узлами в кольце, таким образом передача происходит только между кольцами.
Ячеистая сеть ALE HF может работать или в режиме с коммутацией каналов или в режиме с коммутацией пакетов. Работа в режиме с коммутацией пакетов ALE приводит к высоким издержкам, но разрешает мелкомодульное совместное использование частот. В режиме с коммутацией каналов ALE используется, чтобы установить подключение, прежде чем поток трафика начнется. Это более эффективно, но блокирует частоты. При проведении анализа распространения электромагнитных волн в беспроводной сети можно использовать соответствующие методы прогнозирования [4,5]. Для беспроводных сетей с различной архитектурой можно применять разные интеллектуальные подходы [3].
Применение технологии MESH в качестве передачи данных в автоматических диспетчерских системах решает проблему оперативности доставки сообщений, позволяет практически без ограничений передавать данные диагностики работы машин и механизмов, в том числе и видео изображений. А сама топология MESH, в которой данные от элемента сети поступают на диспетчерский пункт по нескольким (многочисленным) маршрутам, независимым друг от друга, делает такую систему высокоотказоустойчивой и надежной [6].
В статье дан анализ особенностей передачи информации в ячеистой mesh-сети. Приведен пример автоматического установления связи в такой сети.
Литература:
- E. E. Johnson, et al, «Robust Token Management for Unreliable Networks, «Proceedings of MILCOM 2003, IEEE, Boston, October 2003.
- Profile for High Frequency (HF) Radio Data Communications, NATO Standardization Agreement (STANAG) 5066, October 2005.
- Interoperability and Performance Standards for Medium and High Frequency Radio Systems, MIL-STD-188–141B, 2001.
- Стрельцов О. В. Анализ особенностей прогнозирования характеристик электромагнитных волн /О. В. Стрельцов // Моделирование, оптимизация и информационные технологии. 2013. № 1. С. 10.
- Комков Д. В. Характеристики радиопланирования при проектировании беспроводных систем связи / Д. В. Комков // Моделирование, оптимизация и информационные технологии. 2013. № 2. С. 3.
- http://as.kz/seti-yacheistoi-topologii-mesh/