Для успешного экономического развития каждое предприятие по транспортированию нефти и нефтепродуктов стремиться к сокращению энергетических и, соответственно, финансовых затрат на транспортировку продукта по магистральным трубопроводам. Но при этом должны соблюдаться технологические, конструктивные, эксплуатационные, экологические и иные ограничения режимов работы оборудования.
Необходимо разобраться, на что предприятия затрачивают энергию. Основные затраты потребляемой мощности идут на преодоление гидравлического сопротивления трубопровода, работу по производству напора, передаваемого следующей нефтеперекачивающей станции, и работу по преодолению разности геодезических высот.
Таким образом, одним из способов сокращения затрат энергии является снижение гидравлического сопротивления линейной части трубопровода. Гидравлическое сопротивление трубопровода зависит от таких факторов, как: вязкость продукта в трубе, режима течения, состояния внутренней поверхности трубы, наличия инородных скоплений и т. д.
Составляющие гидравлического сопротивления делят на два класса:
- постоянные, зависящие от геометрических параметров трубопровода и свойств перекачиваемого продукта;
- изменяющиеся со временем, например, сопротивление, вносимое изменяющейся шероховатостью стенок при коррозии и образованием отложений.
В первом случае снижение энергозатрат может быть достигнуто за счет точного расчета важнейших параметров трубопровода с помощью специальных программ. Так, одна программа определяет оптимальные диаметры и характеристики насосов с учетом затрат на трубы, арматуру, опоры, теплоизоляцию, амортизацию и ремонт. Для чего же необходимо рассчитывать эти параметры? Такие расчеты точно определяют гидравлическое сопротивление трубопроводов, обвязок насосов, компрессоров и аппаратов. Так же определяются их взаимное влияние друг на друга, местные сопротивления, зависимость от расстановки аппаратов и трасс трубопроводов. Например, было выявлено, что установка диафрагмы в нагнетательном трубопроводе поршневого компрессора снижает его гидравлическое сопротивление за счет гашения пульсации потока.
Значительно количество энергии можно экономить на перекачке, это достигается тщательным выбором насосов, их напора и производительности. Обычно насосы выбирают с запасом по названным параметрам. Поэтому при эксплуатации прибегают к дросселированию давления, что повышает расход энергии на привод насоса. Так же снижению расхода энергии на перекачку нефтепродуктов способствует создание благоприятной гидравлической обстановки в трубе — устранение вибраций и пульсаций. Это достигается путем изменения конфигурации трубопровода, крепления его подвижными и неподвижными опорами, применения гасящих емкостей, оптимизации диаметров трубопроводов и т. д.
Другая программа дает возможность выбрать материал теплоизоляции, рассчитать ее толщину, объем и поверхность.
Эффективным способом снижения затрат энергии при перекачке нефтепродуктов является сокращение сопротивления регулирующих клапанов. Считается, что оно составляет до 30 % сопротивления трубопровода. Уменьшение сопротивление клапанов достигается делением потока нефтепродукта на две части, одна из которых проходит через регулируемые зазоры между седлами и плунжером. Другая часть потока проходит через перепускное отверстие в сменной втулке.
Еще один способ снижения гидравлического сопротивления заключается в применении химических реагентов. Для увеличения пропускной способности технологического участка трубопровода традиционно используются противотурбулентные присадки (далее ПТП).
Они представляют собой полимеры линейной структуры с высокой молекулярной массой. Принцип работы присадок заключается в том, что длинные нитевидные молекулы располагаются вдоль движения молекул жидкости и сглаживают пульсации давления. Реальные данные применения ПТП на трубопроводах показывают экономию электроэнергии в размере от 40 % до 50 %.
Чтобы использование противотурбулентных присадок приводило к экономии, необходимо знать допустимую цену ее покупки. Расчеты для ПТП показали, что ее допустимая цена (при сохранении положительной рентабельности) может достигать существующих рыночных цен на ПТП. На рис. 1 показан оценочный диапазон допустимой стоимости противотурбулентных присадок в зависимости от диаметра трубопровода.
Рис. 1. Допустимая цена на ПТП в зависимости от диаметра трубопровода
Максимально допустимая цена (на рис. 1 обозначена черной линией) достигается при оптимальном сочетании параметров: максимальное использование пропускной способности трубопровода; высокая эффективность ПТП при малых концентрациях; большие расстояния между нефтеперекачивающими станциями при малых разностях высот. Нижняя граница ценового диапазона (на рис. 1 обозначена красной линией) рассчитывается при одновременном типовом отклонении параметров от оптимальных. Расчет применения ПТП (при 45 % эффективности присадки) показал экономическую выгоду на реальном участке нефтепровода Ухта-Ярославль в размере 27 миллионов рублей в год.
Во втором случае — оптимизацией графика пропуска очистных устройств.
Таким образом, описанные способы позволяют предприятиям по транспортированию нефти и нефтепродуктов уменьшить как энергетические, так и финансовые затраты.