In mathematics, the Cesàro means of a sequence are the terms of the sequence
, where
is the arithmetic mean of the first n elements of
.
This concept is named after Ernesto Cesàro (1859–1905).
A basic result states that the limit of a convergent sequence equals the limit of its Cesàro mean. That is, the operation of talking Cesàro means preserves the convergence and the limit of a sequence. This is the basis for using Cesàro means in summability method in the theory of divirgent series.
Let m space of really limited sequences with norm where
. It is known that, m is a complete bordered space. We denote by
the space of convergent sequence. It is obvious that,
is a closed sub-space in
. Next, we denote by
the subset of
consisting of sequence of convergent in Cesàro mean, i.e
if, exist limit
, where
Let the operator ch Cesàro be the operator associated with the sequence
. We denote by
set of sequence of
, for which
it is easy to notice that,
Let
Statement 1
All are a linear subspace of
Task 1
Whether closed subspace when
?
We consider sequences of m, such that or 1
Task 2
Does conformity m?
Definition 1. Let us given the sequence . If the sequence
which consist of elements of the sequence
converges to
then the sequence
converges to
in Cesàro mean.
Example. Let us consider the following sequence
We have an oscillating sequence, but in the Cesàro means it has limit
So, the sequence converges to
in Cesàro mean.
Suppose given the sequence

Where are terms of arithmetic progression.
Theorem 1. If are the terms of arithmetic progression, where
and
then sequence (1) is convergent in Cesàro mean.
Proof.
Where sum of odd members of arithmetic progression,
sum of all members of arithmetic progression.
Then sequence (1) is convergent in Cesàro mean to
.
Theorem 2. If are terms of geometric progression, where
and
when

then sequence is not convergent in Cesàro mean.
Proof.
Where sum of odd members of geometric progression,
sum of all members of geometric progression.
then sequence is not convergent in Cesàro mean
.
Definition 2. Let us given the sequence . The sequences
and
whose consist of elements of the sequences
and
accordingly. If the second sequence
converges to
then the sequence
has the second convergence to
in Cesàro mean.
Theorem 3. If are the terms of geometric progression, where
and
Then the sequence (2) has the second convergence in Cesàro mean.
Proof.
Suppose given the sequence such that
Where sum of odd members of geometric progression,
sum of all members of geometric progression.
Then sequence (2) is convergent in Cesàro mean to
References:
- Hardy, G.H.(1992). Divergent Series. Providence: American Mathematical Society. ISBN 978–0-8218–2649–2
- Katznelson, Yitzhak (1976). An Introduction to Harmonic Analysis. New York: Dover publications. ISBN 978–0-486–63331–2