История развития генераторов ТВЧ
Открытие электромагнитной индукции в 1831 году принадлежит Майклу Фарадею. При движении проводника в поле магнита в нём наводится ЭДС, так же как при движении магнита, силовые линии которого пересекают проводящий контур. Ток в контуре называется индуцированным.
В 1841 году Джеймс Джоуль (и независимо от него Эмиль Ленц) сформулировал количественную оценку теплового действия электрического тока называемого законом Джоуля — Ленца. Тепловое действие индуцированного тока породило поиски устройств бесконтактного нагрева металлов. Первые опыты по нагреву стали с использованием индукционного тока были сделаны Е. Колбе в США.
Первая успешно работающая канальная индукционная печь для плавки стали была построена в 1900 году на фирме «Benedicks Bultfabrik» в Швеции. В респектабельном журнале того времени «THE ENGINEER» 8 июля 1904 г. появилась знаменитая публикация, где шведский изобретатель инженер F. A. Kjellin рассказывает о своей разработке. Печь питалась от однофазного трансформатора.
Первая печь мощностью 78 кВт была запущена в эксплуатацию 18 марта 1900 года и оказалась весьма неэкономичной, поскольку производительность плавки составляла 270 кг стали в сутки. Следующая печь была изготовлена в ноябре того же года мощностью 58 кВт и ёмкостью 100 кг по стали. Печь показала высокую экономичность, производительность плавки составила от 600 до 700 кг стали в сутки. Однако износ футеровки от тепловых колебаний оказался на недопустимом уровне.
В мае 1902 года была введена в эксплуатацию значительно усовершенствованная печь ёмкостью 1800 кг, слив составлял 1000–1100 кг, остаток 700–800 кг, мощность 165 кВт, производительность плавки стали могла доходить до 4100 кг в сутки! Такой результат по потреблению энергии 970 кВт⋅ч/т впечатляет своей экономичностью, которая мало уступает современной производительности порядка 650 кВт⋅ч/т. По расчётам изобретателя из потребляемой мощности 165 кВт в потери уходило 87,5 кВт, полезная тепловая мощность составила 77,5 кВт, получен весьма высокий полный КПД, равный 47 %. Экономичность объясняется кольцевой конструкцией тигля, что позволило сделать многовитковый индуктор с малым током и высоким напряжением — 3000 В.
Своим изобретением инженер F. A. Kjellin положил начало развития промышленных канальных печей для плавки цветных металлов и стали в индустриальных странах Европы и в Америке. Переход от канальных печей 50–60 Гц к современным высокочастотным тигельным длился с 1900 по 1940 г [3].
По настоящее время используются генераторы высокой частоты с усовершенствованными схемами электрических цепей, а конкретно после 1940х годов был произведен переход от ламповых преобразователей к более современным полупроводниковым. Данный переход позволил повысить КПД установок, уменьшить габариты генераторов.
Применение генераторов ТВЧ
Необходимо отметить, что генераторы ТВЧ чаще всего применяются для следующих целей:
– Сверхчистая бесконтактная плавка, пайка и сварка металла.
– Получение опытных образцов сплавов.
– Гибка и термообработка деталей машин.
– Ювелирное дело.
– Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
– Поверхностная закалка.
– Закалка и термообработка деталей сложной формы.
– Обеззараживание медицинского инструмента.
– Распыление геттера и прогрев (активация и тренировка) катода в процессе производства вакуумных электронных приборов.
Преимущества генераторов ТВЧ
Было определено, что основными преимуществами генераторов являются:
- Высокоскоростной разогрев или плавление любого электропроводящего материала.
– Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в жидкости, в вакууме.
– Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п., например, внутренности радиолампы можно прогревать для обезгаживания прямо через стеклянную колбу.
– За счёт возникающих МГД-усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигеле) [1].
– Поскольку, разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.
– Нет загрязнения воздуха, так как отсутствуют продукты горения. Небольшие установки индукционного нагрева можно эксплуатировать в замкнутом и плохо проветриваемом помещении, не оборудованном специальными средствами вентиляции и вытяжками (гаражи, небольшие домашние мастерские, подвалы).
– Удобство эксплуатации за счёт небольшого размера индуктора.
– Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному не прогреву.
– Легко провести местный и избирательный нагрев.
– Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более медленно за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина детали при этом остаётся вязкой).
– Лёгкая автоматизация оборудования и конвейерных производственных линий. Простота управления циклами нагрева и охлаждения. Простая регулировка и удерживание температуры, стабилизация мощности, подача и съём заготовок.
Недостатки генераторов ТВЧ
В рамках настоящего исследования было установлено, что у существующих генераторов ТВЧ имеется ряд недостатков:
– Повышенная сложность оборудования, необходим квалифицированный персонал для проектирования установок, их настройки и ремонта.
– При плохом согласовании индуктора с заготовкой требуется большая мощность на нагрев, чем в случае применения для той же задачи ТЭН, электрических дуг и электронагревательных спиралей.
– Требуется мощный источник электроэнергии для питания установки индукционного нагрева, а также насос и бак с охлаждающей жидкостью для охлаждения индуктора, которые в полевых условиях могут отсутствовать. В этом случае применение, например, газовых горелок с портативными газовыми баллонами более оправдано.
– Несмотря на небольшие размеры индуктора, агрегат индукционного нагрева в целом достаточно громоздок и маломобилен и больше подходит для стационарной установки в помещении, чем для выездных работ.
Результаты проведенных исследований
Анализ развития индукционных нагревателей позволил определить принципиальные схемы различных индукционных генераторов и обратить внимание на отсутствие мобильных и недорогих их конструктивов. Поэтому целью дальнейших исследований было разработка мобильного и бюджетного индукционного генератора.
Достижение данной цели возможно при решении следующих задач:
- Исследование принципа действия нагрева токами высокой частоты.
- Анализ существующих схем работы генераторов ТВЧ
- Разработка конструкции мобильного и бюджетного индукционного генератора.
Литература:
- Бабат Г. И., Свенчанский А. Д. Электрические промышленные печи. — М.: Госэнергоиздат, 1948. — 332 с.
- Изюмов Н. М., Линде Д. П. Основы радиотехники. — М.: Госэнергоиздат, 1959. — 512 с.
- Установки индукционного нагрева/ Под ред. А. Е. Слухоцкого. — Л.: Машиностроение, 1981. — 330 с.
- Савельев И. В. Курс общей физики, том 2. Электричество. 1970
- Иванова Л. И., Гробова Л. С., Сокунов Б. А., Сарапулов С. Ф. Индукционные тигельные печи: Учебное пособие... — 2-е изд. — Екатеренбург: УГТУ — УПИ, 2002. — 87 с.