Об определении зависимости между временем релаксации и гидравлическим сопротивлением при фильтрации в пласте неравновесной жидкости | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №5 (243) февраль 2019 г.

Дата публикации: 31.01.2019

Статья просмотрена: 52 раза

Библиографическое описание:

Гасанов, И. Р. Об определении зависимости между временем релаксации и гидравлическим сопротивлением при фильтрации в пласте неравновесной жидкости / И. Р. Гасанов. — Текст : непосредственный // Молодой ученый. — 2019. — № 5 (243). — С. 19-21. — URL: https://moluch.ru/archive/243/56119/ (дата обращения: 19.12.2024).



В работе выводятся формулы для определения времени релаксации в зависимости от гидравлического сопротивления и параметра Щелкачева [1, 2, 3].

Ключевые слова: гидравлическое сопротивление, число Рейнолдса, трехчленный закон фильтрации, время релаксации

The paper derives formulas for determining the relaxation time depending on the hydraulic resistance  and the Schelkachev parameter [1, 2, 3].

Keywords: hydraulic resistance, Reynolds number, three-term filtration law, relaxation time

Как известно, в наиболее общем случае закон фильтрации можно представить в виде [1]:

(1)

Здесь

Использование кубического слагаемого в уравнении (1) связано с необходимостью, с одной стороны, увеличения точности, с другой — для учета неравновесных свойств фильтрационного потока и влияния инерционных сил. Как видно, при из формулы (1) получается закон Дарси. При получается двучленный закон Форхгеймера. Для получения нужной формулы применим следующие выражения:

, (2)

, (3)

(4)

Из (3) и (4) получается:

(5)

Если учесть (5) в (2) получается:

(6)

А теперь представим формулу (1) в следующем виде:

где (7)

С другой стороны, из выражения

(8)

с учетом (7) и (8) получается:

(9)

Так же из (7) и (6) получается:

или

(10)

При имеем (11)

Для определения времени релаксации при фильтрации неравновесной жидкости используем формулу:

(12)

откуда получается (13)

Если формулу (13) сравнить с формулой (1) при то получаем:

(14)

Если формулу (14) учесть в (11), то получаем: или

(15)

Если то получается:

(16)

Из (9)

Если учесть последнее в (15), то получаем:

(17)

Таким образом, мы получили зависимость между временем релаксации и гидравлическим сопротивлением при фильтрации в пласте неравновесной жидкости.

Литература:

  1. Гасанов И. Р. Обобщенная формула Дюпюи // Международный журнал: Молодой ученый. — № 15 (149). — Апрель 2017.
  2. Гасанов И. Р. К вопросу определения гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента // Международный журнал: Молодой ученый. — № 49 (235). — Декабрь 2018.
  3. Гасанов И. Р. Об определении гидравлического сопротивления при турбулентном режиме фильтрации флюида в пористой среде // Международный журнал: Молодой ученый. — № 2 (240). — Январь 2019.
Основные термины (генерируются автоматически): время релаксации, гидравлическое сопротивление, неравновесная жидкость, формула.


Ключевые слова

гидравлическое сопротивление, время релаксации, число Рейнолдса, трехчленный закон фильтрации

Похожие статьи

Об определении гидравлического сопротивления при турбулентном режиме фильтрации флюида в пористой среде

В данной работе делается попытка определения числа Рейнольдса и гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента, а также получена формула скорости в зависимости от эт...

О решении задачи теории упругого режима при движении жидкости с учетом влияния начального градиента при второй фазе распределения давления в пласте

В данной работе рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при второй фазе распределения давления в пласте. Задача решается методом усреднений.

О плоскорадиальной неустановившейся фильтрации упругой жидкости с учетом влияния начального градиента

В работе предлагается метод, по которому можно более простым способом решать гидродинамические задачи, связанные с неустановившейся фильтрацией упругой жидкости в пористой среде с учетом влияния начального градиента.

К вопросу определения гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента

В данной работе делается попытка определения числа Рейнольдса и гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента, а также получена формула скорости в зависимости от эт...

Решение задачи теории упругого режима с учетом влияния начального градиента при второй фазе распределения давления в пласте

В статье рассматривается приближенный метод решения задачи теории упругого режима для одномерного поступательного движения жидкости с предельным градиентом давления для второй фазы. Задача решена методом «усреднений».

К вопросу решения задачи теории упругого режима при одномерном поступательном движении жидкости с учетом влияния начального градиента

В статье рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при заданном забойном давлении во времени. Задача решается методом усреднений [1, 2].

Об определении эффективной вязкости при фильтрации неравновесной жидкости

В статье закон фильтрации берется в более общем виде. Для этого в формуле от нужно использовать кубическое слагаемое. При этом увеличивается точность при обработке индикаторных линий. Однако это необходимо также и для учета неравновесных свойств ...

Определение коэффициента гидравлического сопротивления и безразмерной функции Леверетта в пластовых условиях

В статье выведены формулы для определения коэффициента гидравлического сопротивления при двухфазной фильтрации, а так же для безразмерной функции Леверетта в пластовых условиях.

Об изучении влияния инерционных сил при двучленном законе фильтрации

В статье предложены формулы для определения градиента давления или депрессии (который должен быть дополнительно преодолен и связан с увеличением скорости фильтрации).

Об определении гидравлического сопротивления при двучленном законе фильтрации

Определение гидравлического сопротивления при фильтрации жидкости в пористой среде имеет большое значение. В данной статье определяется гидравлическое сопротивление при двучленном законе фильтрации жидкости в пористой среде.

Похожие статьи

Об определении гидравлического сопротивления при турбулентном режиме фильтрации флюида в пористой среде

В данной работе делается попытка определения числа Рейнольдса и гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента, а также получена формула скорости в зависимости от эт...

О решении задачи теории упругого режима при движении жидкости с учетом влияния начального градиента при второй фазе распределения давления в пласте

В данной работе рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при второй фазе распределения давления в пласте. Задача решается методом усреднений.

О плоскорадиальной неустановившейся фильтрации упругой жидкости с учетом влияния начального градиента

В работе предлагается метод, по которому можно более простым способом решать гидродинамические задачи, связанные с неустановившейся фильтрацией упругой жидкости в пористой среде с учетом влияния начального градиента.

К вопросу определения гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента

В данной работе делается попытка определения числа Рейнольдса и гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента, а также получена формула скорости в зависимости от эт...

Решение задачи теории упругого режима с учетом влияния начального градиента при второй фазе распределения давления в пласте

В статье рассматривается приближенный метод решения задачи теории упругого режима для одномерного поступательного движения жидкости с предельным градиентом давления для второй фазы. Задача решена методом «усреднений».

К вопросу решения задачи теории упругого режима при одномерном поступательном движении жидкости с учетом влияния начального градиента

В статье рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при заданном забойном давлении во времени. Задача решается методом усреднений [1, 2].

Об определении эффективной вязкости при фильтрации неравновесной жидкости

В статье закон фильтрации берется в более общем виде. Для этого в формуле от нужно использовать кубическое слагаемое. При этом увеличивается точность при обработке индикаторных линий. Однако это необходимо также и для учета неравновесных свойств ...

Определение коэффициента гидравлического сопротивления и безразмерной функции Леверетта в пластовых условиях

В статье выведены формулы для определения коэффициента гидравлического сопротивления при двухфазной фильтрации, а так же для безразмерной функции Леверетта в пластовых условиях.

Об изучении влияния инерционных сил при двучленном законе фильтрации

В статье предложены формулы для определения градиента давления или депрессии (который должен быть дополнительно преодолен и связан с увеличением скорости фильтрации).

Об определении гидравлического сопротивления при двучленном законе фильтрации

Определение гидравлического сопротивления при фильтрации жидкости в пористой среде имеет большое значение. В данной статье определяется гидравлическое сопротивление при двучленном законе фильтрации жидкости в пористой среде.

Задать вопрос