В традиционном земледелии решение проблемы сохранения плодородия почвы является актуальной задачей. В условиях резкого снижения инвестиций, направляемых на повышение плодородия почвы, первостепенное значение приобретают приемы интенсификации биологических факторов, предусматривающие использование органических и бактериальных удобрений, запашку соломы, насыщение севооборотов бобовыми культурами. Эффективно решить эти вопросы можно только в условиях длительных стационарных опытов на основе полевых севооборотов. Севообороты в сочетании с рациональными системами основной обработки почвы являются важными агротехническими и биологическими средствами восстановления плодородия и защиты почвы от эрозии. Они являются основой биологизации земледелия, которая в современных условиях создаёт исключительно благоприятные предпосылки для ведения экологически чистого земледелия [1].
Обработка сама по себе ничего не привносит в почву, однако от нее зависят агрофизические характеристики почвы, определяющие водно-воздушный и тепловой режимы почвы, степень и глубину заделки растительных остатков. В зависимости от приемов основной обработки формируется то или иное строение почвенного профиля по распределению в нем частиц твердой фазы, запасов питательных веществ, перемещению углекислого газа и влаги. Все это может сказаться на динамике и соотношении синтеза и минерализации гумуса, образовании подвижных форм питательных веществ и усвоении их растениями [2].
Целью исследований являлось изучение влияния звеньев севооборота и систем зяблевой обработки почвы на показатели плодородия чернозема выщелоченного и урожайность яровой пшеницы
Исследования проводились в 2007-2009 гг. в условиях полевого стационарного опыта кафедры общего земледелия и землеустройства в зернопаротравяном севообороте (чистый пар – озимая пшеница – яровая пшеница – вико-овес + клевер – клевер 1 г. п. – клевер 2 г. п. – озимая пшеница – яровая пшеница) в учебно-опытном хозяйстве ФГОУ ВПО «Пензенская ГСХА».
Почва опытного участка представлена черноземом выщелоченным, тяжелосуглинистым по гранулометрическому составу. Содержание гумуса в среднем по опыту 6,5%, реакция среды кислая (рНсол 4,8–4,9), обеспеченность азотом высокая, фосфором и калием – средняя.
В качестве объекта исследований использовался рекомендованный для возделывания в Пензенской области сорт яровой пшеницы Тулайковская 10.
В целях выполнения программы исследований проводился многофакторный полевой опыт по следующей схеме:
Фактор А – звенья севооборота:
А0 – Чистый пар – озимая пшеница – яровая пшеница (контроль);
А1 – Клевер 2 г. п. – озимая пшеница – яровая пшеница.
Уборку зерновых культур проводили с одновременным измельчением и разбрасыванием соломы.
Фактор В – системы зяблевой обработки почвы:
В0 – Двухфазная отвальная зяблевая обработка на глубину 20–22 см (контроль);
В1 – Двухфазная безотвальная зяблевая обработка на глубину 20–22 см;
В2 – Минимальная зяблевая обработка на глубину 12–14 см.
Во всех вариантах обработки проводили предварительное лущение на 6–8 см.
Фактор С – способы посева:
С0 – Рядовой посев сеялкой СЗ-3,6 (контроль);
С1 – Разбросной посев сеялкой СШ-3,5.
Норма высева яровой пшеницы 5,0 млн. всхожих зерен на га. Рядовой посев яровой пшеницы проводили сеялкой СЗ-3,6 с последующим прикатыванием кольчато-шпоровыми катками ЗККШ-6. Разбросной посев проводили сеялкой СШ-3,5 (комбинированная посевная машина предназначена для сплошного посева зерновых культур с одновременным внесением минеральных удобрений и предпосевной культивацией).
Трехфакторный опыт размещен методом расщепленных делянок в четырех повторениях. Размер делянок первого порядка: длина – 120 м, ширина – 50 м. Общая площадь делянок – 6000 м2, учетная площадь – 4000 м2. Размер делянок второго порядка: длина – 50 м, ширина – 6 м. Общая площадь делянок – 300 м2, учетная площадь – 200 м2, ширина защитных полос между делянками – 2 м. Размер делянок третьего порядка: длина – 25 м, ширина – 6 м. Общая площадь – 150 м2, учетная – 100 м2.
Все наблюдения, анализы и учет проводили по общепринятым методикам.
Одним из агрофизических показателей состояния почвы, характеризующим ее плодородие, является плотность почвы.
Полученные результаты свидетельствуют, что все три года, в течение которых проводились наблюдения, плотность пахотного слоя весной была оптимальной для яровой пшеницы во всех вариантах опыта: ни вид пара в звене севооборота, ни уменьшение глубины зяблевой обработки почвы под яровую пшеницу не приводили к каким-либо существенным изменениям данного показателя, хотя и была отмечена тенденция к увеличению плотности пахотного слоя в варианте с минимальной обработкой почвы.
Так, при посеве по вспашке плотность слоя 0–30 см по годам составила 1,01–1,05 г/см3, при безотвальной обработке – 1,02–1,09 г/см3, при минимальной обработке – 1,05–1,10 г/см3, перед уборкой – 1,13–1,16 г/см3 и 1,14–1,18 г/см3, 1,19–1,20 г/см3, соответственно.
За годы исследований системы зяблевой обработки почвы существенно отличались по своему влиянию на плотность сложения пахотного горизонта, особенно в слоях 10–20 см и 20–30 см.
В начале весенней вегетации более рыхлое сложение пахотного горизонта отмечалось в варианте со вспашкой и находилось в пределах 0,90–0,91 г/см3 в слое (0–10 см), 1,05–1,07 г/см3 (10–20 см), 1,11 г/см3 (20–30 см); при безотвальном рыхлении: 0,93–0,94 г/см3 (0–10 см), 1,06–1,08 г/см3 (10–20 см), 1,12–1,13 г/см3 (20–30 см); при минимальной обработке: 0,95–0,97 г/см3 (0–10 см), 1,08–1,10 г/см3 (10–20 см), 1,15–1,16 г/см3 (20–30 см).
К уборке происходит уплотнение почвы во всех вариантах и по всем слоям. Наибольшее уплотнение пахотного горизонта отмечалось в варианте с минимальной обработкой почвы, где плотность составила 1,12–1,13 г/см3 в слое (0–10 см), 1,21 г/см3 (10–20 см), 1,22–1,24 г/см3 (20–30 см).
В целом, зяблевая обработка почвы обеспечила сложение пахотного слоя почвы в пределах 1,02–1,08 г/см3 в начале вегетации, 1,08–1,13 г/см3 в середине вегетации и 1,14–1,19 г/см3 перед уборкой. Такие показатели плотности сложения создают благоприятные условия для продукционного процесса возделываемых культур и формирования урожая. Установлено, что зерновые культуры в наших условиях лучше растут и развиваются при плотности сложения почвы от 1,12 до 1,20 г/см3 [3].
Важнейшим показателем плодородия почв, определяющим рост и развитие растений, является содержание влаги в почве.
Полученные результаты исследований свидетельствуют, что вид пара в звене севооборота не оказал существенного влияния на влажность почвы: в среднем за 3 года в пахотном (0–30 см) слое она была в период посева в паровом звене на уровне 27,53%, в травяном звене – 26,29%, перед уборкой – 18,26% и 17,83%, соответственно. В метровом слое в период посева влажность составляла в паровом звене 26,27%, в травяном звене – 25,34%, перед уборкой – 18,49 % и 18,31 %, соответственно.
Изучаемые системы зяблевой обработки почвы так же, как и предыдущий фактор, не вызвали существенных различий в увлажнении ни весной, ни перед уборкой.
Так, в среднем за три года влажность пахотного слоя (0–30 см) в период посева при вспашке составляла 26,83%, при безотвальной обработке – 26,81%, при минимальной обработке – 27,07%; перед уборкой культуры влажность составила по вариантам опыта 17,68%, 18,00% и 18,28%, соответственно. Несущественные различия во влажности отмечались и в метровом слое почвы. Весной влажность почвы в варианте со вспашкой составила 25,73%, с безотвальной обработкой – 25,71% и минимальной – 25,88%; перед уборкой – 18,41%, 18,23% и 18,42%, соответственно.
Запасы продуктивной влаги также были практически одинаковыми во всех вариантах опыта. Так, в паровом звене к моменту посева количество продуктивной влаги в метровом слое варьировало в пределах 176,2–178,2 мм, перед уборкой – 94,7–97,1 мм; в травяном звене – 171,3–173,5 мм и 94,2–95,6 мм, соответственно.
Исследования по влиянию систем зяблевой обработки почвы показали, что в среднем за три года наблюдений запасы продуктивной влаги в метровом слое выщелоченных черноземов в весенний период в варианте со вспашкой составили 175,3 мм, по безотвальному рыхлению – 173,8 мм и минимальной обработке – 175,7 мм.
Перед уборкой в метровом слое на всех вариантах обработки почвы содержание продуктивной влаги снизилось за время вегетации за счет потребления растениями, физического испарения и составило в варианте со вспашкой 94,4 мм, по безотвальному рыхлению – 95,4 мм и минимальной обработке – 96,3 мм.
Эффективность расходования влаги на формирование урожая культуры в различных вариантах была неодинаковой, о чем свидетельствуют данные расчета коэффициента водопотребления (таблица 1).
Коэффициент водопотребления, определяющий эффективность использования влаги на единицу сухого вещества в посевах яровой пшеницы, был ниже в травяном звене и составил 1355,2–1383,2 м3/т, что свидетельствует о более эффективном использовании влаги при формировании единицы урожая
Минимализация обработки почвы путем замены отвальной на безотвальную, а также снижение глубины обработки почвы способствовали небольшому росту коэффициента водопотребления с 1443,1 м3/т на отвальной до 1459,2 м3/т на минимальной обработке в паровом звене и с 1355,2 м3/т на вспашке до 1383,2 м3/т на минимальной обработке почвы в травяном звене севооборота. Это обусловлено, с одной стороны, уменьшением суммарного водопотребления, а также снижением урожайности культуры.
Таблица 1
Элементы баланса влаги в слое 0–100 см под посевами яровой пшеницы,(2007-2009 гг.)
Звено севооборота
|
Система зяблевой обработки почвы |
Запасы продуктивной влаги, мм |
Осадки за вегетацию, мм
|
Расход влаги из почвы, мм
|
Суммарное водо-потребление, мм |
Выход зерна, т/га
|
Коэффициент водопотребления, м3/т |
|
посев |
уборка |
|||||||
Паровое |
|
178,2 |
94,7 |
220,2 |
83,5 |
301,6 |
2,09 |
1443,1 |
|
176,2 |
95,7 |
220,2 |
80,5 |
298,3 |
2,06 |
1448,1 |
|
минимальная |
177,8 |
97,1 |
220,2 |
80,7 |
299,2 |
2,05 |
1459,2 |
|
Травяное |
|
173,0 |
94,2 |
220,2 |
78,8 |
296,8 |
2,19 |
1355,2 |
|
171,3 |
95,1 |
220,2 |
76,2 |
295,2 |
2,16 |
1366,6 |
|
минимальная |
173,5 |
95,6 |
220,2 |
77,9 |
296,0 |
2,14 |
1383,2 |
Большую роль в повышении устойчивости яровой пшеницы к водному дефициту играет почвенное плодородие. Его улучшение означает, что в критические по водообеспеченности годы потери зерна можно снизить на 3–10 ц/га [6].
Проведенное нами сравнительное изучение влияния звеньев севооборота и систем зяблевой обработки почвы показало, что они оказывают определенное влияние на агрохимические показатели плодородия почвы, что отражается на росте, развитии и урожайности последующих культур [5].
Результаты исследований показали, что в пахотном слое содержание подвижного фосфора в травяном звене севооборота было больше на 36,2 мг/кг по сравнению с паровым звеном. Содержание щелочногидролизуемого азота и калия в изучаемых звеньях севооборота изменялось незначительно. Применение ежегодной минимальной зяблевой обработки способствует дифференциации элементов питания в верхнем горизонте. Содержание щелочногидролизуемого азота, подвижного фосфора и обменного калия в варианте с минимальной обработкой почвы увеличивается на 2,2 мг/кг, 14 мг/кг и 12,5 мг/кг почвы в слое 0–10 см по сравнению с традиционной отвальной обработкой.
Одним из основных факторов, влияющих на плодородие почвы, является жизнедеятельность почвенной микрофлоры, а также производные микробиологической активности, такие, как целлюлозолитическая активность.
Анализ целлюлозолитической активности выщелоченного чернозема показывает, что существенных различий в интенсивности разложения льняной ткани через 30 дней после закладки по вариантам опыта не выявлено. При увеличении срока закладки льняной ткани на 30 и 60 дней активность микроорганизмов была выше в травяном звене севооборота на 4,1% и 4,3%, соответственно. Целлюлозолитическая активность почвы зависела и от зяблевой обработки почвы. Она составила в слое 0–30 см при вспашке – 28,6%, при безотвальной обработке – 24,4% и минимальной – 23,1%. Более интенсивное разложение льняного полотна во всех вариантах опыта наблюдалось в верхних (0–10 см) слоях почвы. Более сильный нагрев верхнего достаточно увлажненного горизонта (0–10 см) и хороший доступ к нему кислорода обеспечивают здесь развитие аэробной микрофлоры. Степень разложения льняного полотна в значительной мере зависела и от складывающихся гидротермических условий. Так, наибольшее разложение полотна отмечалось в увлажненном 2008 году, процент разложения составил 29,3%, что больше по сравнению с 2007 годом на 8,4%.
Итоговым критерием оценки агротехнических приемов является урожайность сельскохозяйственных культур (таблица 2).
Таблица 2
Урожайность яровой пшеницы в зависимости от вида пара в звеньях севооборота, зяблевой обработки почвы и способов посева
Факторы |
Урожайность, т/га |
|||||
А – звено севооборота |
В – система зяблевой обработки почвы |
С – способ посева |
2007 г. |
2008 г. |
2009 г. |
средняя |
паровое |
|
рядовой |
2,01 |
1,98 |
2,00 |
1,99 |
разбросной |
2,12 |
2,22 |
2,19 |
2,18 |
||
|
рядовой |
1,95 |
1,96 |
1,99 |
1,97 |
|
разбросной |
2,05 |
2,21 |
2,20 |
2,15 |
||
минимальная |
рядовой |
1,93 |
1,95 |
1,98 |
1,95 |
|
разбросной |
2,05 |
2,20 |
2,18 |
2,14 |
||
травяное |
|
рядовой |
2,14 |
2,07 |
2,05 |
2,09 |
разбросной |
2,28 |
2,33 |
2,30 |
2,30 |
||
|
рядовой |
2,09 |
2,05 |
2,02 |
2,05 |
|
разбросной |
2,23 |
2,32 |
2,30 |
2,28 |
||
минимальная |
рядовой |
1,97 |
2,03 |
2,02 |
2,01 |
|
разбросной |
2,18 |
2,30 |
2,30 |
2,27 |
||
Средние по факторам |
А |
паровое |
2,02 |
2,09 |
2,07 |
2,06 |
травяное |
2,15 |
2,18 |
2,16 |
2,16 |
||
В |
двухфазная отвальная |
2,14 |
2,15 |
2,14 |
2,14 |
|
|
2,08 |
2,13 |
2,12 |
2,11 |
||
минимальная |
2,03 |
2,12 |
2,11 |
2,09 |
||
С |
рядовой |
2,00 |
2,01 |
2,00 |
2,00 |
|
разбросной |
2,16 |
2,26 |
2,24 |
2,22 |
||
НСР05
|
|
0,14 |
0,11 |
0,12 |
0,13 |
|
0,11 |
0,09 |
0,10 |
0,11 |
|||
0,11 |
0,10 |
0,13 |
0,12 |
|||
0,12 |
0,11 |
0,13 |
0,14 |
|||
0,14 |
0,13 |
0,10 |
0,12 |
|||
0,15 |
0,16 |
0,11 |
0,15 |
|||
0,18 |
0,15 |
0,14 |
0,17 |
В целом за период исследований вид пара в звеньях севооборота не оказывал существенного влияния на урожайность культуры. Так, урожайность пшеницы в паровом звене составляла 2,06 т/га, в травяном звене – 2,16 т/га (таблица 2).
Системы зяблевой обработки почвы существенного влияния на урожайность не оказали. Урожайность яровой пшеницы варьировала в зависимости от зяблевой обработки почвы в пределах – 2,09–2,14 т/га.
Существенное влияние за годы проведенных исследований на урожайность оказал способ посева. Разбросной способ посева, проведенный многооперационной посевной машиной, увеличивал урожайность на 0,22 т/га по сравнению с рядовым посевом сеялкой СЗ-3,6.
Таким образом, в зернопаротравяном севообороте есть возможность замены традиционной отвальной зяблевой обработки почвы на минимальную ресурсосберегающую без существенного снижения урожайности возделываемой культуры в сочетании с разбросным способом посева.
Литература:
Воронкова, Н.А. Агроэкологическая оценка влияния предшественников на элементы плодородия чернозема выщелоченного и урожайность яровой мягкой пшеницы / Н.А. Воронкова, О.Ф. Хамова // Вестник Алтайского ГАУ. – 2009. – № 5. – С. 24-29.
Гаевая, Э.А. Влияние разных способов обработки почвы на ее физические свойства / Э.А. Гаевая // Научный журнал КубГАУ. – 2008. – № 39 (5). – С 21-23.
Курятникова, Н.А. Биологические особенности и элементы технологии возделывания овса голозерного в условиях лесостепи Среднего Поволжья: дис. … канд. с.-х. наук / Н.А. Курятникова. – Пенза, 2007. – 191 с.
Орлов, А.Н. Урожайность и качество зерна яровой пшеницы в зависимости от элементов технологии возделывания / А.Н. Орлов, О.А. Ткачук, Е.В. Павликова // Достижения науки и техники АПК. – 2009. – № 7. – С. 28-30.
Ушаков, Р.Н. Возделывание яровой твердой пшеницы в неблагоприятных условиях / Р.Н. Ушаков // Зерновое хозяйство. – 2001. – № 1. – С. 27-28.