В работе изучаются -расслоенные формации и классы Фиттинга конечных групп. Получено описание строения -спутников некоторых -расслоенных формаций и классов Фиттинга конечных групп.
Ключевые слова: конечная группа, класс групп, формация, класс Фиттинга, -расслоенная формация, -расслоенный класс Фиттинга.
В теории классов конечных групп центральное место занимают такие классы групп, как формации, и двойственные им классы — классы Фиттинга (см., например, [1]). Эффективным средством для изучения классов конечных групп являются функциональные методы, с помощью которых были построены такие важные классы, как локальные и композиционные формации и классы Фиттинга, -локальные и -композиционные формации и классы Фиттинга. Исследованиями таких классов групп занимались В. Гашюц, К. Дерк, Т. Хоукс, Л. А. Шеметков, В. А. Ведерников, А. Н. Скиба, Н. Н. Воробьев и многие другие (см., например, [1, 2, 5–7]).
В настоящей работе изучаются -расслоенные формации и классы Фиттинга конечных групп, введенные в рассмотрение В. А. Ведерниковым и М. М. Сорокиной в 1999 году [3]. Статья посвящена описанию строения -спутников ряда -расслоенных формаций и классов Фиттинга.
Рассматриваются только конечные группы. В работе используются классические методы теории групп и теории классов групп. Используемые определения и обозначения для групп и классов групп стандартны, их можно найти в [1]. Приведем лишь некоторые из них.
Классом групп называется множество групп, содержащее вместе с каждой своей группой и все группы, ей изоморфные; класс групп называется формацией, если выполняются условия:
1) если и , то ,
2) если и , то ;
Класс групп называется классом Фиттинга, если выполняются условия:
1) если и , то,
2) если и , , , то [1].
Через обозначается -корадикал группы , т. е. наименьшая нормальная подгруппа группы , фактор-группа по которой принадлежит формации ; –-радикал группы , т. е. наибольшая нормальная подгруппа группы , принадлежащая классу Фиттинга . В дальнейшем обозначает множество всех простых чисел. Пусть – непустое множество групп. Через обозначается класс групп, порожденный ; в частности — класс всех групп, изоморфных группе — класс всех простых групп, изоморфных композиционным факторам группы . Пусть — класс всех конечных групп, — класс всех простых конечных групп, — непустой подкласс класса . Если , то группа называется -группой. Через обозначается класс всех -групп; , [3].
- Equation Chapter 1 Section 1-расслоенные формации конечных групп
Функции {формации групп}, {непустые формации Фиттинга}, принимающие одинаковые значения на изоморфных группах из области определения, называются соответственно-функцией и -функцией [4]. Формация
и для любого )
называется -расслоенной формацией с -спутником и направлением и обозначается [3]. Пусть . Направление -расслоенной формации называется -направлением, если [4].
Теорема 1.1. Пусть , , где — произвольная -функция, — -функция такая, что и для любого выполняется . Тогда .
Доказательство. 1) Установим, что . Пусть . Тогда для любого . Поэтому . Так как , то и поэтому . Это означает, что и . Из и получаем, что и . Таким образом, и, значит, .
2) Покажем, что . Пусть . Установим, что . Для этого проверим, что выполняются условия: (а) и для любого (б). Так как , то . Следовательно, (а) верно. Пусть . Так как , то и поэтому . Таким образом, (б) верно. Следовательно, и .
Из 1) и 2) получаем, что . Тем самым установлено, что класс всех единичных групп является -расслоенной формацией с -спутником , описанным в условии теоремы, и любым направлением . Теорема доказана.
Теорема 1.2. Пусть , , где — произвольная -функция, — -функция такая, что и для любого выполняется . Тогда .
Доказательство. 1) Пусть . Тогда по определению -расслоенной формации . Следовательно, .
2) Пусть . Покажем, что . Для этого проверим, что выполняются следующие условия: (а) и для любого (б). Так как и — формация, то . Поскольку то . Следовательно, (а) верно. Пусть . Так как и — формация, то Поскольку , то . Таким образом, (б) верно. Следовательно, и, значит, .
Из 1) и 2) получаем, что . Тем самым установлено, что класс всех конечных групп является -расслоенной формацией с -спутником , описанным в условии теоремы, и любым направлением . Теорема доказана.
Теорема 1.3. Пусть , , где произвольная -функция, — -функция такая, что и для любого выполняется . Тогда .
Доказательство. 1) Покажем, что . Пусть . Так как — формация, то . Покажем, что для любого справедливо Действительно, так как , то . Это означает, что не существует таких , для которых . Поэтому утверждение о том, что для любого , верно. Таким образом, и .
2) Покажем, что . Пусть . Тогда (а) для любого . Далее, для любого по заданию функции выполняется (б). Таким образом, утверждения (а) и (б) выполняются одновременно. Это возможно в единственном случае, когда . Следовательно, . Таким образом, .
Из 1) и 2) получаем, что . Тем самым установлено, что класс всех конечных -групп является -расслоенной формацией с -спутником , описанным в условии теоремы, и любым направлением . Теорема доказана.
Теорема 1.4. Пусть , , , где — -направление, — -функция такая, что и для любого выполняется. Тогда .
Доказательство. 1) Покажем, что . Пусть . Так как , то по заданию функции имеем . Для любого из того, что , следует, что Тогда по условию теоремы . Следовательно, достаточно показать, что . Действительно, так как и — -направление, то . Поэтому и . Это означает, что . Таким образом, и .
2) Покажем, что . Пусть . Тогда . Поскольку , то для любого справедливо . Следовательно, по заданию функции для любого выполняется . Поэтому , откуда . Тогда Таким образом, и .
Из 1) и 2) получаем, что . Поэтому класс всех конечных -групп является -расслоенной формацией с -спутником , описанным в условии теоремы, и любым -направлением . Теорема доказана.
Теорема 1.5. Пусть , , , , где – произвольная -функция, — -функция такая, что и для любого выполняется.
Тогда .
Доказательство. 1) Покажем, что . Пусть . Так как , то . Для любого из следует, что Поэтому и, значит, . Тогда . Таким образом, и .
2) Покажем, что . Пусть . Тогда и для любого справедливо . Следовательно, по заданию функции для любого выполняется . Так как , то . Поэтому и, значит, .
Из 1) и 2) получаем, что . Таким образом, класс всех конечных -групп является -расслоенной формацией с -спутником , описанным в условии теоремы, и любым направлением . Теорема доказана.
2. -расслоенные классы Фиттинга конечных групп
Функции {классы Фиттинга групп}, {непустые формации Фиттинга}, принимающие одинаковые значения на изоморфных группах из области определения, называются соответственно -функцией и -функцией [3]. Класс Фиттинга
и для любого )
называется -расслоенным классом Фиттинга с -спутником и направлением и обозначается [3]. Пусть Направление -расслоенного класса Фиттинга называется -направлением, если [4].
Теорема 2.1. Пусть , , где — произвольная -функция, — -функция такая, что и для любого выполняется . Тогда
Доказательство. 1) Установим, что Пусть Тогда . Поэтому . Таким образом, . Это означает, что . Далее, так как , то и, значит, . Поэтому второе условие из определения выполняется. Следовательно, и
2) Покажем, что . Пусть Тогда . Поэтому и . Тогда . Так как , то для любого . Так как , то . Поэтому и, значит, . Таким образом, .
Из 1) и 2) следует, что Тем самым установлено, что класс — -расслоенный класс Фиттинга с -спутником , описанным в условии теоремы, и любым направлением . Теорема доказана.
Теорема 2.2. Пусть , где произвольная -функция, -функция такая, что и для любого выполняется Тогда
Доказательство. 1) Покажем, что . Пусть . Тогда и для любого . Следовательно, . Поэтому .
2) Покажем, что . Так как множество всех конечных групп, а состоит только из конечных групп, то .
Из 1) и 2) следует, что . Тем самым установлено, что — -расслоенный класс Фиттинга с -спутником , описанным в условии теоремы, и направлением для любой -функции . Теорема доказана.
Теорема 2.3. Пусть , , где — произвольная -функция, — -функция такая, что и для любого выполняется . Тогда .
Доказательство. 1) Покажем, что Пусть Так как и — класс Фиттинга, то . Покажем, что для любого справедливо . Действительно, так как , то и, значит, . Поскольку , то . Следовательно, утверждение о том, что для любого , верно. Таким образом, и
2) Покажем, что . Пусть . Проверим, что . Так как , то (а) для любого . С другой стороны, для любого по заданию функции выполняется (б). Из (а) и (б) следует, что и, значит, . Следовательно, Таким образом, .
Из 1) и 2) получаем, что Тем самым установлено, что — -расслоенный класс Фиттинга с -спутником , описанным в условии теоремы, и любым направлением . Теорема доказана.
Теорема 2.4. Пусть , , , где — - направление -расслоенного класса Фиттинга, -функция такая, что и для любого выполняется.
Тогда
Доказательство. 1) Покажем, что Пусть . Так как , то . Пусть. Установим, что . Поскольку и , то Отсюда следует, что Поэтому достаточно показать, что . Действительно, так как и , то . Отсюда следует, что . Таким образом, и .
2) Покажем, что . Пусть Тогда и для любого справедливо . Согласно заданию , для любого справедливо . Таким образом, и . Отсюда следует, что и, значит, .
Из 1) и 2) следует, что . Тем самым установлено, что — -расслоенный класс Фиттинга с -спутником , описанным в условии теоремы, и любым -направлением . Теорема доказана.
Теорема 2.5. Пусть , , , , где — произвольная -функция, — -функция такая, что и для любого справедливо . Тогда
Доказательство. 1) Покажем, что Пусть Тогда , то . Пусть. Покажем, что . Так как , то . Пусть . Покажем, что . Так как и то . Отсюда следует, что по условию теоремы. Поскольку , то . Таким образом, , и поэтому
2) Покажем, что . Пусть . Тогда и для любого справедливо . По заданию для любого выполняется . Отсюда следует, что . Из следует, что . Поэтому . Так как , то .
Из 1) и 2) следует, что Тем самым установлено, что — -расслоенный класс Фиттинга с -спутником , описанным в условии теоремы, и любым направлением . Теорема доказана.
Литература:
- Doerk, K. Finite soluble groups / K. Doerk, T. Нawkes. — Berlin — New York: Walter de Gruyter, 1992. — 901 с.
- Gaschutz, W. Zur Theorie der endlichen auflosbaren Gruppen / W. Gaschutz // Math. Z. — 1963. V. 80, N 4. — P. 300−305.
- Ведерников, В. А., Сорокина, М. М. -расслоенные формации и классы Фиттинга конечных групп / В. А. Ведерников, М. М. Сорокина // Дискретная математика. — 2001. — Том 13, Выпуск 3. — С. 125–144.
- Ведерников, В. А. Максимальные спутники -расслоенных формаций и классов Фиттинга / В. А. Ведерников // Труды ИММ УрО РАН. — 2001. — Том 7, № 2. — С. 55–71.
- Воробьев Н. Н. Алгебра классов конечных групп. — Витебск: ВГУ имени П. М. Машерова, 2012. — 322 с.
- Скиба, А. Н. Алгебра формаций / А. Н. Скиба. — Минск: Беларуская навука, 1997. — 240 с.
- Шеметков, Л. А. Формации конечных групп / Л. А. Шеметков. — М.: Наука, 1978. — 272 с.