Источниками получения меди являются руды, продукты их обогащения — концентраты — и вторичное сырье. На долю вторичного сырья в настоящее время приходится около 40 % от общего выпуска меди.
Медные руды практически полностью относятся к полиметаллическим. Возможными природными спутниками меди, как и других тяжелых цветных металлов, являются элементы 4–6-го длинных периодов периодической системы Д. И. Менделеева.
Ценными спутниками меди в рудном сырье в различных комбинациях могут быть около 30 элементов. Важнейшие из них: цинк, свинец, селен, теллур, кадмий, никель, кобальт, золото, серебро, сера, германий, рений, таллий, индий, молибден, железо. В тех случаях, когда медьсодержащие руды содержат заметные количества других металлов-спутников, соизмеримые с содержанием меди, их называют медно-никелевыми, медно-цинковыми, медно-свинцово-цинковыми и т. д.
В медном производстве используют все типы руд: сульфидные (сплошные и вкрапленные), окисленные, смешанные и самородные. Однако основным медным сырьем являются сульфидные вкрапленники, запасы которых в недрах являются наибольшими. Из сульфидных руд в настоящее время получают 85–90 % всей первичной меди.
Проблему рационального использования рудного сырья и создания малоотходной технологии, в частности при производстве меди, невозможно решить без организации комплексной переработки металлургических шлаков.
Изучение данных предприятий по переработке медных шлаков позволил установить, что в большинстве случаев остаточное содержание металла в отвальном продукте составляет 0,50–0,70 % и более. Причём методы переработки шлаков и их первоначальный состав практически не отражается на конечном результате обеднения. В геохимическом балансе доля оксидной меди составляет 0,50 %, а сульфидной 1,20 %.
Было установлено, что на долю основных извлекаемых форм меди (оксидная и сульфидная) приходится 0,69 % от общего количества, на сульфатную 0,38 %, на самородную 0,08 %. Можно предположить, что сульфатная составляющая является вторичной и образовалась при охлаждении расплава. При температурах жидкого состояния (1100 0С и более) сульфаты являются неустойчивыми соединениями и разлагаются с выделением сернистых газов [1].
При обеднении этих шлаков сульфидная медь должна осесть в донную фазу. Оксидную медь необходимо сульфидировать, т. к. только в этом случае она может перейти в штейновую фазу. При изучении этих вопросов большое значение имеет фактор времени, т. к. они должны быть завершены за время пребывания шлака в печи до их слива. На наш взгляд, для того чтобы не снижать общую производительность печи, процессы сульфидирования окисленных соединений меди и создания условий для их коалисценции проводить в ковше после слива их из печи и транспортировки до шлакового отвала. При этом создадутся условия, при которых донная часть расплава в виде бедного штейна может быть возвращена в голову процесса. Верхняя часть расплава, которая будет содержать малое количество меди может быть использовано в народном хозяйстве [2].
Сульфидирование окисленных соединений меди и металлической меди может протекать по следующим реакциям:
[Cu2O] + [FeS] ↔ [Cu2S] + (FeO)
2 [Cu] + ½ S2 ↔ [Cu2S]
Максимальное сульфидирование по этим реакции будет иметь место при предельном насыщении ванны серой и её стационарного состояния.
Процесс сульфидирования при этом происходит достаточно быстро. Затруднения могут встречаться при отделении мелких частиц оксидов меди и металлической меди, взвешенных в ванне шлака. Скорость осаждения этих частиц мала и для ускорения их отделения от шлака эффективно перемешивание ванны. При этом будет обеспечен более тесный контакт шлака и сульфидизатора, например в результате продувки воздухом, инертными газами или углеводородами. Отделение взвешенных частиц — процесс более медленный и требует достаточного времени для перемешивания.
В качестве сульфидизатора мы использовали пиритный концентрат. При нагреве в контакте с жидким медным шлаком пирит диссоциирует по реакции:
FeS2 = FeS +S
Выделяющийся сульфид железа не только сульфидирует окисленные соединения меди, но и восстанавливает магнетит шлака по реакциям:
FeS + Fe3O4 = 4FeO =1/2 S2
FeS + 3Fe3O4 = 10 FeO + SO2
Выделяющиеся при этом газы барбатируют жидкую ванну шлака и создают условия для коалисценции мелких капель штейна и перехода их в донную фазу.
Выделяющаяся в результате разложения пирита атомарная сера сульфидирует металлическую медь:
2Cu + S =Cu2S
При этом сульфид меди также может перейти в штейновую фазу.
Основное назначение добавляемого пирита — это перевод оксида меди в его сульфид. Константа равновесия реакции взаимодействия между Cu2O и FeS при 1200 0С равна 104. Это значит, что даже если указанные оксид и сульфид взять в молярном соотношении 1:1, то и тогда активности Cu2S в штейне и FeO в шлаке будут значительными величинами, тогда как в равновесном состоянии содержание FeS в штейне и Cu2O в шлаке невелико.
На основании проведённых исследований можно сделать вывод о том, что при совместном использовании восстановительно-сульфидирующих комплексов можно переработать медьсодержащие шлаки с использованием тепла расплавленного состояния с приемлемыми технико-экономическими показателями. При этом в обеднённом шлаке содержание меди находится в пределах 0,35–0,45 %. Эту медь уже практически невозможно извлечь без разрушения структуры компонентов шлака. Это означает, что обеднённые шлаки можно использовать в отраслях народного хозяйства (при производстве цемента, в стройиндустрии, при дорожном строительстве и т. д.) Это даст возможность комбинатам перейти на малоотходную или безотходную технологию.
Литература:
- Санакулов К. С., Хасанов А. С. Переработка шлаков медного производства. –Ташкент: ФАН, 2007. -256 с.
- Metals The Metallurgy of the Common, Gold, Silver, Iron, Copper, Lead, and Zinc, by Leonard S. Austin. 2012.