Проведена оценка величины гидравлического напора насоса, а также необходимого перепада давления на турбине при работе лабораторной установки для испытания газовых турбин, изготовленных аддитивными методами.
Ключевые слова: аддитивные технологии, газовая турбина, лабораторная установка, оценка работы турбонасосного агрегата, насос, испытания.
К настоящему моменту одними из самых быстро развивающихся и перспективных направлений в области машиностроения являются аддитивные технологии. Суть методов состоит в изготовлении деталей посредством послойного наращивания материала по электронным моделям. Создавая изделия таким образом, удается значительно снизить затраты на их изготовление, что находит применение в различных сферах промышленности: от производства товаров массового потребления до изготовления уникальных деталей авиационной и ракетно-космической техники.
Наиболее целесообразно применение аддитивных технологий для производства деталей относительно простой формы, к прочностным характеристикам которых предъявляются невысокие требования. Это связано с тем, что структура получаемых деталей представляет собой множество связанных между собой частиц, и прочность конечной детали определяется в большей степени прочностью связей, нежели прочностью материала самих частиц. Также рациональным является применение аддитивных технологий при создании экспериментальных образцов, макетов и лабораторных установок. Тем самым сокращаются затраты на проведение предварительных испытаний по исследованию влияния геометрии изделия на протекание различных рабочих процессов.
В данной работе проводится оценка энергетических возможностей лабораторной установки для испытания газовых турбин, изготовленных аддитивными методами, совместно с насосом в составе турбонасосного агрегата.
Лабораторная установка представляет собой универсальный комплекс, позволяющий исследовать работу аддитивно изготовленных турбин с различной конфигурацией рабочих лопаток на однофазном или двухфазном рабочих телах с различной температурой. Модель установки представлена на рис. 1.
Рис. 1. Модель лабораторной установки
Принцип работы установки заключается в следующем. На рабочие лопатки турбины через сопловой аппарат, расположенный в корпусе, подается сжатый воздух под определенным давлением. Давление потока воздуха на лопатки турбины создает крутящий момент. Турбина приводится во вращение, передавая момент по валу на насос, который в свою очередь создает напор и увеличивает энергию подаваемой к нему воды.
Исследуемая турбина выполнена из PLA-пластмассы, а её геометрия, как и геометрия рабочих лопаток, идентичны прототипу, которым является турбина, использованная в лабораторной установке, разработанной на базе МГТУ им Н. Э. Баумана [1]. Используемый насос был предназначен для работы в турбонасосном агрегате жидкостного ракетного двигателя 5Д12. Однако для снижения затрат на разработку нового агрегата, насос и его корпусные детали были использованы при создании оцениваемой установки.
Оценка энергетических возможностей стенда заключается в определении напора насоса, который может быть получен при достижении турбиной предельно допустимой частоты вращения, а также в определении необходимого для этого давления сжатого воздуха на входе в сопловой аппарат. Момент, создаваемый турбиной, определяется из гидродинамического напора, создаваемого насосом.
Как было показано, идентичная газовая турбина, выполненная из PLA-пластмассы, способна работать при частотах вращения, достигающих
и при моменте без существенных повреждений и изменений её конструкции [2]. При следующих расчетах указанная частота, выраженная в , принята за максимально допустимую при проведении испытаний.
В связи с недостатком сведений об используемом насосе зависимость создаваемого им напора от частоты вращения вала была установлена, исходя из коэффициента быстроходности , принятого с учетом отношения входного и выходного диаметров насоса:
— входной и выходной диаметры насоса. Принято: [3].
Объемный расход подаваемой к насосу воды принят равным , а массовый расход подаваемого на турбину воздуха , что соответствует устойчивой работе системы подачи.
При указанных предельной частоте вращения вала и объемном расходе воды напор насоса принимает значение [3]:
— объемный расход воды.
После принятия значений критического коэффициента кавитации, давления насыщенных паров и плотности воды было найдено минимально допустимое значение давления на входе в насос, ниже которого происходит кавитация, недопустимая при работе насоса [4]:
— критический коэффициент кавитации, принятый из интервала для обычных насосов [4], — плотность воды, — давление насыщенных паров воды при [5].
По найденному напору был найден вызываемый им перепад давлений воды:
Задавшись коэффициентом полезного действия (КПД) насоса, была рассчитана потребная мощность на привод насоса:
— КПД насоса, принятый в первом приближении [4], а также установлен крутящий момент на валу:
Далее была найдена зависимость располагаемой мощности турбины на привод насоса и импеллерного уплотнения вала от степени расширения сжатого воздуха [4]:
адиабатная работа турбины, — температура подводимого воздуха, — показатель адиабаты,
газовая постоянная для сжатого воздуха, — молекулярная масса воздуха [5], — КПД турбины, принятый в первом приближении с учетом гидравлических потерь в сопловом аппарате и на рабочих лопатках, — степень расширения воздуха на турбине, — давление торможения воздуха на входе в сопловой аппарат и статическое давление воздуха на выходе с турбины, — массовый расход подаваемого воздуха.
Поскольку мощность, потребляемая импеллерным уплотнением, незначительна и много меньше мощности, потребляемой насосом, при дальнейших расчетах доля располагаемой мощности турбины на привод импеллера не учитывается. Однако при последующих пересчетах она может быть рассчитана и учтена по известной методике [3].
Из равенства потребной мощности на привод насоса и располагаемой мощности турбины аналитически была найдена степень расширения рабочего тела турбины, при которой при заданных условиях реализуется указанная предельная частота вращения вала:
Графическое решение данного уравнения представлено на рис. 2.
Рис. 2. Графическое решение уравнения мощностей турбины и насоса
После принятия давления на выходе из турбины равным атмосферному давлению окружающей среды , было найдено требуемое давление воздуха на входе в сопловой аппарат:
Таким образом, в результате проведенной оценки было установлено, что при работе лабораторной стендовой установки для испытания газовых турбин, изготовленных аддитивными методами, предельно допустимая частота вращения турбины, равная , может быть реализована при подаче через сопловой аппарат сжатого воздуха с давлением торможения и массовым расходом . При этом работающий совместно с турбиной насос создаст напор, равный что соответствует перепаду давления , при подаче к насосу воды с объемным расходом . Величина крутящего момента на валу будет составлять
Полученные результаты позволяют оценить работу лабораторной установки в первом приближении, так как значения величин, используемых при расчете, были приняты без учета влияний многих факторов, для оценки которых недостаточно опытных данных. В дальнейших работах планируется экспериментальное подтверждение полученных результатов.
Литература:
- Изучение энергетических характеристик активной турбины на модельном однофазном и двухфазном рабочем теле: метод. указания к выполнению лабораторных работ по курсу «Теория и проектирование ТНА» / Максимов С. Ф., Ягодников Д. А., Андреев Е. А. [и др.]; МГТУ им. Н. Э. Баумана. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. — 46 с.: ил.
2. Алексеев В. В., Калугин К. С. Исследование прочностных характеристик моделей газовых турбин, изготовленных аддитивными методами. В кн.: Сб. тезисов докл. Всероссийской. студ. конф., Москва, 2018: МГТУ им. Н. Э. Баумана, 2018. С. 39–40.
3. Теория и расчет агрегатов питания жидкостных ракетных двигателей / Овсянников Б. В., Боровский Б. И. — 3-е изд., перераб. и доп. — М.: Машиностроение, 1986. — 376 с.: ил.
4. Жидкостные ракетные двигатели. Основы проектирования: учебник для высших учебных заведений / Добровольский М. В.; под ред. Д. А. Ягодникова — 3-е изд., доп. — М.: Издательство МГТУ им. Н. Э. Баумана, 2016. — 461 с.: ил.
5. Справочник по теплофизическим свойствам газов и жидкостей / Варгафтик Н. Б. — 2-е изд. — М.: Наука, 1972. — 721 с.