- Беспилотный летательный аппарат –
разновидность летательного аппарата, управление которым не
осуществляется пилотом на борту. Различают следующие беспилотные
летательные аппараты: неуправляемые; автоматические; дистанционно
пилотируемые летательные аппараты. С учетом специфики применения
силовых установок для БПЛА одноразового применения стоимость
двигателей и их разработки должна быть минимизирована, но при этом
необходимо учитывать и сопоставление стоимостей одноразового БПЛА и
выполняемой им функции, что оправдывает достаточно высокую стоимость
силовой установки для крылатых ракет специального назначения.
- Проблема минимизации затрат на этапе проектирования силовой установки является чрезвычайно актуальной. Особенно это касается начальных этапов проектирования, на которых возможна замена физических экспериментов и опережающих испытаний натурных объектов проведением математического моделирования.
- Одним из интенсивно развивающихся направлений в отечественном авиадвигателестроении является широкое внедрение на этапах НИОКР расчетных методов исследования, базирующихся на использовании возрастающей производительности ЭВМ и современных прикладных программ, которые позволяют моделировать сложные физические процессы, происходящие в ГТД и его основных узлах. Такой путь требует значительно меньших финансовых затрат, чем экспериментальная отработка авиационных двигателей и их элементов, и позволяет в современных условиях проводить научно-исследовательские работы с высокой эффективностью.
- Решение рассматриваемой авторами задачи относится к этапу концептуального проектирования ГТД, на котором ведется поиск типа, структуры и основных режимно - конструкторских параметров проектируемого газотурбинного двигателя исключительно на основе особенностей и целевых признаков надсистемы, в которой он будет применяться.
- Определяющим фактором, согласно [1], для выбора силовой установки при концептуальном проектировании является надсистема, представляющая собой БПЛА одноразового применения для дозвуковых скоростей полета.
- В 70-х годах XX века была описана концепция БПЛА одноразового применения, реализующего полет на предельно малой высоте с «огибанием» рельефа поверхности. В настоящее время подобная концепция находит широкое применение на крылатых оперативно-тактических ракетах класса «воздух-поверхность». Траектория полета обеспечивает низкую радиолокационную заметность БПЛА. Подобная концепция управления БПЛА накладывает на силовую установку специфические требования. На рис. 1 (а) представлена трехуровневая модель БПЛА и силовой установки с декомпозицией до уровня газотурбинного двигателя, что позволяет проанализировать функциональную взаимосвязь моделей летательного аппарата с различным уровнем декомпозиции. На рис. 1 (б) представлена типовая обезразмеренная траектория полета БПЛА с «огибанием» рельефа поверхности.
- а) б)
- Проблема минимизации затрат на этапе проектирования силовой установки является чрезвычайно актуальной. Особенно это касается начальных этапов проектирования, на которых возможна замена физических экспериментов и опережающих испытаний натурных объектов проведением математического моделирования.
Рисунок 1. Трехуровневая функциональная модель БПЛА и силовой установки на основе газотурбинного двигателя и типовая траектория полета летательного аппарата
-
- Определение параметров силовой установки рассматривается исходя из обеспечения требуемых характеристик на крейсерском режиме полета БПЛА. В качестве примера в табл. 1 приведены данные для выбора силовой установки (параметры выбраны авторами произвольно для проектирования).
Таблица 1
Параметры ЛА на крейсерском режиме полета
Высота полета, м |
25 |
Масса БПЛА не более, кг |
1150 |
Потребная тяга двигателя, кН |
3,25 |
0,7 |
|
Дальность полета, м |
750000 |
- Исходя из данных, представленных в табл.1,
расчетной точкой для проектировочного расчета являются следующие
внешние условия: Н=25 м, М=0,7.
- Выбор параметров силовой установки для беспилотного летательного аппарата производится согласно IDEF0 - диаграмме представленной на рис. 2. Диаграмма отражает функциональную взаимосвязь этапов решения рассматриваемой задачи, относящейся к этапу концептуального проектирования силовой установки. Выбор силовой установки беспилотного летательного аппарата одноразового применения производится в системе имитационного моделирования авиационных ГТД DVIGwp [2, 3].
- В рассматриваемом диапазоне высот и скоростей полета летательного аппарата наилучшей топливной экономичностью обладает семейство двухконтурных турбореактивных двигателей. В настоящей работе рассматривается схема ТРДД с раздельными соплами.
- Согласно [4] наиболее обоснованным критерием для оптимизации термогазодинамических параметров авиационных ГТД является масса силовой установки и запас топлива на борту летательного аппарата.
- Выбор параметров силовой установки для беспилотного летательного аппарата производится согласно IDEF0 - диаграмме представленной на рис. 2. Диаграмма отражает функциональную взаимосвязь этапов решения рассматриваемой задачи, относящейся к этапу концептуального проектирования силовой установки. Выбор силовой установки беспилотного летательного аппарата одноразового применения производится в системе имитационного моделирования авиационных ГТД DVIGwp [2, 3].
Рисунок 2. IDEF-0 диаграмма для концептуального проектирования силовой установки БПЛА
-
- Критерий оптимизации ГТД – масса силовой установки и топлива на борту ЛА:
-
где
–
количество двигателей,
–
коэффициент увеличения массы СУ за счет элементов крепления и
конструкции мотогондолы,
–коэффициент,
учитывающий массу топливной системы ЛА. Особенности расчета критерия
оптимизации силовой установки изложены в [4].
- Представленная методика расчета массы силовой установки и потребного запаса топлива на борту ЛА реализована в системе имитационного моделирования DVIGwp для оптимизации параметров термодинамическогоцикла ГТД.
- На рис. 3 представлены результаты структурного синтеза модели в СИМ DVIGwp.
- Система уравнений, описывающих рабочий процесс двухвального ТРДД замыкается с помощью четырех параметров, определяющих термодинамический цикл ГТД как тепловой машины – степень повышения давления в вентиляторе и компрессоре , , степень двухконтурности, температура газов на выходе из камеры сгорания .
- Представленная методика расчета массы силовой установки и потребного запаса топлива на борту ЛА реализована в системе имитационного моделирования DVIGwp для оптимизации параметров термодинамическогоцикла ГТД.
Рисунок 3. Топологическая схема модели двухвального ТРДД в СИМ DVIGwp
начальные условия, 2– входное устройство, 3–компрессор, 4– отбор газа, 5–общие результаты, 6– камера сгорания, 7–канал, 8–газовая турбина, 9– реактивное сопло, 10–газовый поток, 11–механический поток
- Как правило, температура газов на выходе из камеры сгорания определяется достигнутым технологическим уровнем или иными специфическими ограничениями. В частном случае величина ограничивается исходя из требования применения неохлаждаемых лопаток соплового аппарата и рабочего колеса турбины (для сокращения стоимости изделия). Соответственно температура газов на выходе из камеры сгорания ограничивается величиной В СИМ DVIGwp проведена совокупность проектировочных расчетов при различных сочетаниях , , . Основным требованием является обеспечение потребного уровня тяги ГТД на крейсерском режиме полета. Основные результаты моделирования в СИМ DVIGwp представлены на рис. 4.
- Как правило, температура газов на выходе из камеры сгорания определяется достигнутым технологическим уровнем или иными специфическими ограничениями. В частном случае величина ограничивается исходя из требования применения неохлаждаемых лопаток соплового аппарата и рабочего колеса турбины (для сокращения стоимости изделия). Соответственно температура газов на выходе из камеры сгорания ограничивается величиной В СИМ DVIGwp проведена совокупность проектировочных расчетов при различных сочетаниях , , . Основным требованием является обеспечение потребного уровня тяги ГТД на крейсерском режиме полета. Основные результаты моделирования в СИМ DVIGwp представлены на рис. 4.
а) б)
Рисунок 4. Выбор термодинамических параметров ТРДД с использованием критерия
-
На рис. 4 (а) и 4 (б) представлены результаты
выбора параметров ТРДД исходя из определения критерия оптимизации –
минимизации суммарной массы силовой установки и запаса топлива,
потребного на полет. При выбранных начальных условиях определение
оптимальных параметров заключается в нахождении экстремума функции
двух переменных
.
На рис. 4 (а) представлена
оптимизация в два этапа – определение локального экстремума на
изолинии с
последующим определением экстремума функции.
- На рис. 4 (б) представлена изоповерхность при, которая позволяет выявить оптимальное сочетание термодинамических параметров ТРДД.
Таблица 2
Основные параметры термодинамического цикла оптимального ТРДД
1325 |
|
1,05 |
|
5,16 |
|
2,7 |
- Таким образом, в работе представлены основные возможности разрабатываемых в НИЛ САПР-Д средств имитационного моделирования для исследования авиационных ГТД и его узлов на ранних стадиях проектирования в термогазодинамическом аспекте. СИМ DVIGwp позволяет проводить структурный и параметрический синтез авиационных ГТД различных схем, оптимизацию параметров термодинамического цикла исходя из выбранного критерия, расчет различных характеристик ГТД (в настоящей работе высотно-скоростных).
Литература:
- Таким образом, в работе представлены основные возможности разрабатываемых в НИЛ САПР-Д средств имитационного моделирования для исследования авиационных ГТД и его узлов на ранних стадиях проектирования в термогазодинамическом аспекте. СИМ DVIGwp позволяет проводить структурный и параметрический синтез авиационных ГТД различных схем, оптимизацию параметров термодинамического цикла исходя из выбранного критерия, расчет различных характеристик ГТД (в настоящей работе высотно-скоростных).
- Ахмедзянов А. М. Проектирование авиационных газотурбинных двигателей // Учебник под ред. проф. А. М. Ахмедзянова. - М. : Машиностроение, 2000. - 454 с.
- Ахмедзянов Д. А. Свидетельство об официальной
регистрации программы для ЭВМ № 2004610868. Система
термогазодинамического моделирования газотурбинных двигателей на
переходных режимах работы DVIGwp / Д. А. Ахмедзянов, И. А.
Кривошеев, Е. С. Власова. М.: Роспатент, 2004.
- Ахмедзянов Д. А. Термогазодинамический анализ рабочих процессов ГТД в компьютерной среде DVIGw / Д. А. Ахмедзянов, И. А. Кривошеев [и др.]. Уфа: УГАТУ, 2003. – 162 с.
- 4 Григорьев В.А. Выбор параметров и термогазодинамические расчеты авиационных газотурбинных двигателей: учеб.пособие/ В. А. Григорьев и др. – Самара: СГАУ, 2009. – 202 с.
- Ахмедзянов Д. А. Термогазодинамический анализ рабочих процессов ГТД в компьютерной среде DVIGw / Д. А. Ахмедзянов, И. А. Кривошеев [и др.]. Уфа: УГАТУ, 2003. – 162 с.