В работе приведены результаты анализа текущего состояния систем электроснабжения воздушного судна. В качестве тенденции развития системы электроснабжения рассмотрена концепция самолета с полностью электрифицированным оборудованием. Описаны требования к системам электроснабжения.
Ключевые слова: воздушное судно, система электроснабжения, генератор, самолет с полностью электрифицированным оборудованием.
Система электроснабжения является одной из ключевых систем воздушного судна. Она предназначена для обеспечения электропитания бортового оборудования (системы навигации, управления и т. п.) и агрегатов, потребляющих электроэнергию. Общей чертой бортовых систем электроснабжения можно считать их разделение на системы генерирования, представляющую совокупность источников электроэнергии и устройств управления и контроля, а также систему распределения, которая транспортирует электроэнергию к потребителям [1].
В работе [2] приводится разделение систем электроснабжения на первичные, вторичные, резервные и аварийные. Первичной называется система, в состав которой входят генераторы, которые приводятся во вращение авиадвигателями. Вторичной системой называют систему преобразователей энергии из первичной системы. Резервная вырабатывает электроэнергию от вспомогательной силовой установки, а аварийная от аккумуляторных батарей и аварийных преобразователей. Такое разделение следует считать условным, т. к. оно не учитывает конструктивных особенностей конкретного самолета. Например, на самолете Airbus A320 допускается запуск систем от аккумуляторных батарей, а беспилотные летательные аппараты чаще всего имеют только один источник электроэнергии [3].
Более очевидным является разделение системы электроснабжения воздушного судна по роду тока и напряжения на три группы:
1) система электроснабжения постоянного тока низкого напряжения 28 В;
2) система электроснабжения переменного трехфазного тока переменной частоты;
3) система электроснабжения переменного трехфазного тока 115/200 В постоянной частоты 400 Гц с приводом постоянной частоты вращения.
Под системой обеспечения постоянным током (рисунок 1) понимают систему, в которой основным источником питания используется постоянный ток напряжения 28 В. В роли источника питания могут выступать аккумуляторные батареи и генераторы постоянного тока. Преимуществом такой системы является использование генератора в качестве стартера и простая параллельная схема работы. Такие системы находят применение в малой авиации и в беспилотных летательных аппаратах. Для потребителей переменного тока в таких системах используют преобразователи, чаще всего инверторы напряжения.
Рис. 1. Структурная схема системы электроснабжения постоянного тока. ГПТ — генератор постоянного тока; АБ — аккумуляторная батарея
Система электроснабжения переменного тока в качестве источника используются генераторы переменного тока. Такие системы нашли широкое применение в коммерческой авиации за счет своих высоких показателей надежности, экономичности и эффективности в целом [3]. Большинство таких самолетов оснащены турбореактивными двигателями, частота вращения ротора которых может меняться в больших диапазонах. При жестком механическом приводе на генератор переменного тока частота тоже начинает меняться в больших диапазонах, что недопустимо для питания электропотребителей. Постоянную частоту тока получают путем использования привода постоянной частоты вращения, который работает по принципу редуктора.
Рис. 2. Структурная схема системы электроснабжения постоянного тока. Г — генератор переменного тока; ППЧВ — привод постоянной частоты вращения
Смешанные системы электроснабжения используют как генераторы постоянного тока, так и генераторы переменного однофазного тока напряжением 115 В частотой 400 Гц. К таким системам можно, например, отнести системы электроснабжения турбовинтовых самолетов. В данной системе генератор переменного тока имеет изменяющуюся частоту, но так как в полете обороты турбовинтовых двигателей практически не изменяются, то и частота генераторов также остаётся постоянной.
Рис. 3. Структурная схема смешанной системы электроснабжения. Г1 — генератор переменного тока; Г2 — генератор постоянного тока
Отдельно стоит упомянуть появившуюся в конце 80-х годов прошлого века концепцию самолета с полностью электрифицированным оборудованием (СПЭО). Такой подход к конструкции самолета позволяет добиться высоких показателей эффективности и экономичности, при этом значительно уменьшив массу самолета, позволяя размещать больше пассажиров [1,4]. Однако эта концепция заставляет пересмотреть существующую структуру современных систем электроснабжения.
Концепция СПЭО имеет ряд преимуществ:
- Отказ от гидравлических систем повышает надежность самолета, а также снижает сложность, избыточность, массу, затраты на монтаж и эксплуатацию [5].
- Снижение необходимой взлетной мощности двигателя путем внедрения системы электрического запуска авиадвигателя, что может также хорошо сказаться на эксплуатации в холодных условиях [4].
- Снижение потребления смазочных жидкостей и трения систем путем использования улучшенных магнитно-подшипниковых систем в стартере/генераторе авиадвигателей и вспомогательной силовой установки [4].
- Увеличение надежности системы электроснабжения путем доработки системы аварийного энергообеспечения ветряным генератором [4,5].
- Замена системы отбора воздуха на электронасосы снижает трудоемкость и стоимость монтажа [4,5].
Принятие такой концепции позволит достичь значительных улучшений с точки зрения веса самолета, расхода топлива, общей стоимости, ремонтопригодности, надежности в целом и надежности авиационных систем [3,4,5].
Недостатком концепции СПЭО принято считать повышенные требования к самой системе электроснабжения в сфере генерирования и оперирования электроэнергией, надежности систем и их отказоустойчивости, что подразумевает под собой внедрение инноваций в системах производства, обработки, распределения и управления электроэнергией [5,6]. В связи с увеличением количества потребляемой мощности, на новую систему электроснабжения должны накладываться следующие принципы:
1) генераторы переменного тока должны по возможности работать в режимах генерирования и электростартерного запуска авиадвигателя;
2) аварийные системы генерирования должны иметь возможность использования авторотационного режима работы первичных двигателей;
3) каждая из систем генерирования должна обеспечивать работоспособность при неработающих других системах генерирования;
4) системы электроснабжения должны обладать унифицированными интерфейсами, давая возможность к совершенствованию каждого из элементов системы;
5) наличие встроенного автоматического предполетного и полетного контроля с целью определения состояния элементарной конструктивной единицы; ведение протокола состояния системы с возможной передачей информации через телекоммуникационные каналы;
6) прогнозирование отказов и рабочего ресурса систем в целом и наиболее важных конструктивных блоков, включая аккумуляторные батареи.
Заключение
В работе были рассмотрены основные виды систем электроснабжения, применяемых на воздушном транспорте. Определены основные виды систем электроснабжения, проведен их анализ, сфера применения, достоинства и недостатки, структурная схема работы.
Дальнейшим развитием систем электроснабжения является концепция самолета с полностью электрифицированным оборудованием. Концепция подразумевает замену элементов механических, гидравлических и пневматических систем на электрооборудование. Такой метод имеет ряд преимуществ и недостатков. Одним из недостатков является необходимость усовершенствования системы электроснабжения в связи с увеличенным энергопотреблением. Также, конструктивная схема системы электроснабжения также должна претерпеть изменения, перейдя от вида централизованной системы к робастной, усиленной или централизованной [4,5].
Литература:
1. ГОСТ Р 54073–2017. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии
2. Брускин Д. Э. Самолеты с полностью электрифицированным оборудованием. Сер. Электрооборудование транспорта. — Т. 6 / Д. Э. Брускин, С. И. Зубакин. — М.: ВИНИТИ, 1986. — 108 с.
- Злочевский В. С. Системы электроснабжения пассажирских самолетов. — М.: Машиностроение, 1971. — 376 с.
- Moir I. Aircraft Systems: Mechanical, electrical, and avionics subsystems integration, Third Edition / I. Moir, A.Seabridge. — John Wiley & Sons, Ltd., 2008. — 504 р.
- Cronin, M. J., The all-electric aircraft / M. J. Cronin // IEE Review, Vol. 36. — 1990, pp. 309–311.
- Волокитина Е. В., Головизнин С. Б. Полностью электрифицированный самолет от концепции до реализации // Электроника и электрооборудование транспорта. — 2007. — № 1. — с. 2–5.