Коррозия внутренней части резервуаров для хранения нефти | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 30 ноября, печатный экземпляр отправим 4 декабря.

Опубликовать статью в журнале

Автор:

Рубрика: Химия

Опубликовано в Молодой учёный №41 (279) октябрь 2019 г.

Дата публикации: 13.10.2019

Статья просмотрена: 3861 раз

Библиографическое описание:

Гужва, В. Е. Коррозия внутренней части резервуаров для хранения нефти / В. Е. Гужва. — Текст : непосредственный // Молодой ученый. — 2019. — № 41 (279). — С. 4-8. — URL: https://moluch.ru/archive/279/62985/ (дата обращения: 16.11.2024).



В данной статье была исследована коррозионная стойкость различных частей резервуара для хранения нефти после его длительной эксплуатации. Были выявлены различия между коррозионной стойкостью разнородных частей резервуара. Установлено, что материал резервуара, контактирующий только с нефтью в процессе эксплуатации, характеризуется наибольшей коррозионной стойкостью. С другой стороны, материал резервуара, находящийся ближе всего ко дну, который долгое время контактирует с осажденной водой, имеет самую высокую скорость коррозии в этой среде. Уровень скорости коррозии различных частей резервуара классифицируются по содержанию водонефтяной эмульсии.

Ключевые слова: резервуар для хранения нефти, сталь, коррозия, стационарный потенциал, деградация, осажденная вода.

В последние годы обозначилась значительная проблема, связанная с эксплуатацией нефтехранилищ. Наблюдались многочисленные коррозионные повреждения на внутренних поверхностях фрагментов резервуаров. Наибольшая плотность коррозионных ям выявлена в местах: а) крышек резервуаров, подверженных воздействию влаги и летучих агрессивных компонентов нефти, и б) донной части резервуара, контактирующей с так называемой осажденной водой (рис. 1.). (Такая вода присутствует в виде отдельной фазы в лиофобной водонефтяной эмульсии).

Рис. 1. Коррозионная среда в днище резервуара: 1- сырая нефть, 2 — вода, 3 — соли, 4 — осажденная вода, 5 — шлам

Агрессивность осажденной воды обусловлена растворенными в ней кислотами и солями. Наибольшая концентрация растворенных в воде веществ присутствует под слоем нефти, что ускоряет коррозию в элементах, подверженных воздействию границы раздела фаз “нефть-вода” [2]. Скорости коррозии, измеренные для образцов, вырезанных из донных фрагментов нефтепровода, подвергнутых длительной эксплуатации, были значительно выше, чем для тех же фрагментов новых нефтепроводов. Была выдвинута гипотеза [4], что это явление вызвано устойчивым комбинированным воздействием механической нагрузки и поглощенного в металле водорода. Результаты, представленные в работе [5], свидетельствуют о том, что механическая нагрузка и агрессивная среда осажденной воды могут привести к серьезной деградации стали в процессе эксплуатации резервуаров.

Целью данной статьи, было выявление факторов, связанных с коррозионной деградацией отдельных частей резервуара для хранения нефти.

Для опытов была использована обычная углеродистая сталь Ст3сп, которая применялась в изготовлении резервуара для хранения нефти, выведенного из эксплуатации после более чем 25 лет службы. Образцы материала были вырезаны из следующих зон резервуара (таблица 1):

Таблица 1

Зоны резервуара

№ зоны

1

2

3

4

Описание

Верхняя часть стенки, периодически подвергается воздействию конденсированных паров нефти и воды

Стенка резервуара, находится в постоянном контакте с нефтью

Нижняя часть стенки, подвержена воздействию осажденной воды

Дно резервуара, находится в постоянном контакте с осажденной водой

Испытания на коррозионную стойкость проводились в среде осажденной воды, водородный показатель которой лежит в промежутке 6,5–6,6 (рН = 6,5–6,6), взятой из двух эксплуатируемых нефтяных резервуаров (двухфазная система “нефть–вода” в соотношении 1:1) гравиметрическим методом. Время выдержки образцов составило 7 суток. Результаты экспериментов были усреднены и представлены в виде зависимости плотности коррозионных дефектов (Д) и коррозионных ям (П) на единицу поверхности. Также были проведены электрохимические измерения стационарного потенциала образцов, подвергнутых воздействию различных коррозионных сред.

В дополнение к испытанию на коррозионную стойкость, механические свойства образцов были оценены измерениями твердости, ударопрочности и прочности на растяжение.

Поверхности всех исследованных образцов резервуара были покрыты слоем продуктов коррозии, слабо связанных с металлом подложки. Коррозия стенки резервуара равномерная. С другой стороны, крышка резервуара, дно и нижняя часть стенки поражены питтинговой коррозией. При глубине питтингов, достигающей нескольких миллиметров, очевидно, что материал 1, 3 и 4 зон подвергается слишком агрессивной эксплуатационной среде.

Несмотря на различия в коррозионных повреждениях, существенных различий в значениях предела текучести для разных секций резервуара не наблюдалось. Однако другие механические параметры показывают систематические изменения, перечисленные в таблице 2. Образцы, представляющие материал 2 зоны, характеризуются наименьшей твердостью и наибольшей ударопрочностью. С другой стороны, материал 3 зоны характеризуется самой высокой чувствительностью к трещинам.

Таблица 2

Механические свойства, измеренные для образцов четырех секций резервуара, использованных вданном исследовании

Параметр

Зона

1

2

3

4

Твердость, НВ

126

108

130

123

Предел прочности, МПа

488

440

478

435

Предел текучести, МПа

278

263

273

266

Ударная прочность, Дж/

72

153

62

84

В ходе коррозионных исследований были обнаружены существенные различия в скоростях коррозии материала различных зон, представленные в таблице 3. Зона 2, стенки резервуара которой находятся в постоянном контакте с нефтью, характеризуется самой высокой коррозионной стойкостью.

Измерения стационарного потенциала образцов различных зон резервуара, проведенные в условиях контакта с осажденной водой (по отношению к хлоридсеребряному электроду), показывают, что существует корреляция между величиной потенциала и степенью деградации материала. Значения потенциала материала в различных зонах следующие: зона 2 (-360 мВ) < зона 1 (-445мВ) < 3 зона (-460мВ) < зона 4 (-490 мВ). Можно сделать вывод, что значения потенциала соответствуют коррозионной стойкости материала. В связи с этим стационарный потенциал представляется полезным фактором, характеризующим степень деградации металла в процессе эксплуатации резервуара.

Таблица 3

Показатели скорости коррозии (Д) и (П)

Зона

Осажденная вода

Система “нефть-вода”

Водонефтяная эмульсия

Д, мг/·ч

П, мм/год

Д, мг/·ч

П, мм/год

Д, мг/·ч

П, мм/год

1

28,0

0,31

59,0

0,66

17,0

0,19

2

12,5

0,14

50,0

0,55

19,0

0,21

3

28,5

0,32

66,0

0,74

17,0

0,19

4

22,5

0,25

58,0

0,65

18,0

0,20

Материал зоны 2 характеризовался наименьшей скоростью коррозии, в то время как наибольшая была выявлена для материала зоны 4. Это можно частично объяснить влиянием механической нагрузки, которая порождает более высокие напряжения в зоне 4.

Циклическое заполнение и опорожнение резервуаров для хранения нефти приводит к образованию водонефтяной эмульсии. В связи с этим также были проведены измерения скоростей коррозии материала различных зон резервуара в водонефтяной эмульсии. Для получения эмульсии использовали магнитный смеситель. Как видно из значений, приведенных в таблице 3, скорости коррозии в таких условиях незначительны. Это, вероятно, вызвано ингибированием коррозии из-за нефтяных мицелл в динамической среде.

В ходе исследований были выявлены различия в коррозионной стойкости материала из разных зон нефтехранилища. Установлено, что материал резервуара, находящийся в контакте с нефтью, характеризуется наименьшими скоростями коррозии при последующей выдержке в осажденной водной среде и в водонефтяной эмульсии. Самая низкая коррозионная стойкость характерна для материала днища резервуара, где осажденная вода присутствует в эксплуатационной среде.

Литература:

  1. Zagórski1, H. Matysiak1, Z. Słobodian2, O. Zvirko2, H. Nykyforchyn2, K. Kurzydłowski1. Corrosion Degradation of Oil Storage Tank // Fiz.-Khim. Mekh. Mater 1, 437–439–2004. [Researchgate]. URL: https://www.researchgate.net/publication/240478038_Corrosion_and_stress-corrosion_cracking_of_exploited_storage_tank_steel.
  2. А. А. Гоник. Коррозия нефтепромышленного оборудования и меры ее предупреждения. — М.: Недра, 1976. — 189 с.
  3. И. В. Костицына. Коррозионная стойкость трубных сталей в агрессивных средах нефтяных и газовых месторождений. — диссертация кандидата технических наук: 02.00.04 [Место защиты: Челябинский государственный университет].- Челябинск, 2014.
  4. Шрейдер А. В., Шпарбер И.С, Арчаков Ю. И. Влияние водорода на нефтяное и химическое оборудование. М.: Машиностроение, 1976. — 88 с.
  5. Y. Krasowsky, A. A. Dolgiy, V. M. Torop. Charpy testing to estimate pipeline steel degradation after 30 years of operation. In Proc. “Charpy Centenary Conference”. — Poitiers, 2001, v.1. — P. 489–495.
Основные термины (генерируются автоматически): осажденная вода, коррозионная стойкость, водонефтяная эмульсия, зона, хранение нефти, материал резервуара, механическая нагрузка, длительная эксплуатация, коррозионная стойкость материала, стационарный потенциал.


Ключевые слова

сталь, деградация, коррозия, резервуар для хранения нефти, стационарный потенциал, осажденная вода

Похожие статьи

Влияние различных агрессивных факторов на состояние арматуры железобетонных изделий

В представленной статье рассмотрены основные процессы, которые происходят с арматурой железобетонных изделий, подвергающийся влиянию спектра агрессивных факторов окружающей среды. Также были проведены химические опыты на выявление коррозии на металла...

Исследование физико-механических свойств разработанного для сохранения ценности техногенного сырья изоляционного состава, используемого на отрабатываемом участке техногенного месторождения

Актуальность статьи не вызывает никаких сомнений, особенно в условиях комплексного использования недр. Исследуя вопрос подготовки добычных блоков техногенного сырья, представленными хвостами обогащения, можно выделить проблему влияния воды, которая п...

Причины возникновения солевой коррозии железобетонных элементов конструкции

В статье перечислены причины возникновения коррозии в железобетонных конструкциях при эксплуатации мостовых сооружений. Изучено влияние коррозии на несущую способность железобетонных конструкций

Исследование антикоррозионных свойств нетканого полиэстерного слоя, дополненного графеном

С развитием технологий возникают риски, связанные с проблемой явления коррозии в промышленности и можно, путем создания покрытия на поверхности металла, в определенной степени снизить его контакт с внешней средой, таким образом, борясь с явлением кор...

Влияние буровых шламов на окружающую среду и способы их утилизации

Буровой шлам, образующийся в процессе бурения скважин буровым агентом на углеводородной основе, имеет вид мягкой пастообразной массы черного цвета с отчетливым запахом нефтепродуктов. Буровой шлам на нефтяной основе имеет повышенное содержание масел ...

Исследование процессов очистки питьевой воды от железа и марганца гранулированным композиционным стеклокерамическим материалом

Разработан и исследован новый фильтрующий материал для очистки питьевой воды от железа и марганца, который содержит в качестве основы гранулированную стеклокерамику, полученную путём вторичной переработки стеклобоя. Определены физико-технические хара...

Исследование свойств бетона с добавкой технического углерода

В данной статье рассмотрены свойства электропроводящего бетона, получаемого с помощью вовлечения технического углерода как добавки. Рассматриваемая технология применяется в качестве «теплых дорог» и «теплого бетона». Непосредственно цементобетонный м...

Шлакощелочные бетоны высокой прочности для водохозяйственного строительства

В Узбекистане запасы сырья, применяемые в качестве заполнителей для бетонов, ограничены. Для решения этой задачи необходимо применение высокоактивных веществ, что позволит эффективно утилизировать имеющиеся ресурсы. К ним относятся шлакощелочные вяжу...

Экспериментальный анализ и оценка прочности сжатия прорезиненного бетона

Переработка автомобильных покрышек является альтернативным источником мелких заполнителей для производства прорезиненного бетона, что приведет к значительному повышению морозостойкости бетона, защите окружающей среды и сохранению природных ресурсов п...

Свойства тампонажных растворов, их виды и функции

В статье рассматривается технология цементирования скважин. Автор анализирует тампонажные растворы, используемые в процессе цементирования скважин. Также выделены технологические характеристики при выборе тампонажного раствора. В ходе исследования по...

Похожие статьи

Влияние различных агрессивных факторов на состояние арматуры железобетонных изделий

В представленной статье рассмотрены основные процессы, которые происходят с арматурой железобетонных изделий, подвергающийся влиянию спектра агрессивных факторов окружающей среды. Также были проведены химические опыты на выявление коррозии на металла...

Исследование физико-механических свойств разработанного для сохранения ценности техногенного сырья изоляционного состава, используемого на отрабатываемом участке техногенного месторождения

Актуальность статьи не вызывает никаких сомнений, особенно в условиях комплексного использования недр. Исследуя вопрос подготовки добычных блоков техногенного сырья, представленными хвостами обогащения, можно выделить проблему влияния воды, которая п...

Причины возникновения солевой коррозии железобетонных элементов конструкции

В статье перечислены причины возникновения коррозии в железобетонных конструкциях при эксплуатации мостовых сооружений. Изучено влияние коррозии на несущую способность железобетонных конструкций

Исследование антикоррозионных свойств нетканого полиэстерного слоя, дополненного графеном

С развитием технологий возникают риски, связанные с проблемой явления коррозии в промышленности и можно, путем создания покрытия на поверхности металла, в определенной степени снизить его контакт с внешней средой, таким образом, борясь с явлением кор...

Влияние буровых шламов на окружающую среду и способы их утилизации

Буровой шлам, образующийся в процессе бурения скважин буровым агентом на углеводородной основе, имеет вид мягкой пастообразной массы черного цвета с отчетливым запахом нефтепродуктов. Буровой шлам на нефтяной основе имеет повышенное содержание масел ...

Исследование процессов очистки питьевой воды от железа и марганца гранулированным композиционным стеклокерамическим материалом

Разработан и исследован новый фильтрующий материал для очистки питьевой воды от железа и марганца, который содержит в качестве основы гранулированную стеклокерамику, полученную путём вторичной переработки стеклобоя. Определены физико-технические хара...

Исследование свойств бетона с добавкой технического углерода

В данной статье рассмотрены свойства электропроводящего бетона, получаемого с помощью вовлечения технического углерода как добавки. Рассматриваемая технология применяется в качестве «теплых дорог» и «теплого бетона». Непосредственно цементобетонный м...

Шлакощелочные бетоны высокой прочности для водохозяйственного строительства

В Узбекистане запасы сырья, применяемые в качестве заполнителей для бетонов, ограничены. Для решения этой задачи необходимо применение высокоактивных веществ, что позволит эффективно утилизировать имеющиеся ресурсы. К ним относятся шлакощелочные вяжу...

Экспериментальный анализ и оценка прочности сжатия прорезиненного бетона

Переработка автомобильных покрышек является альтернативным источником мелких заполнителей для производства прорезиненного бетона, что приведет к значительному повышению морозостойкости бетона, защите окружающей среды и сохранению природных ресурсов п...

Свойства тампонажных растворов, их виды и функции

В статье рассматривается технология цементирования скважин. Автор анализирует тампонажные растворы, используемые в процессе цементирования скважин. Также выделены технологические характеристики при выборе тампонажного раствора. В ходе исследования по...

Задать вопрос