Решение задачи о плоскорадиальной неустановившейся фильтрации газа к скважине методом последовательной смены стационарных состояний с учетом влияния начального градиента | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №42 (280) октябрь 2019 г.

Дата публикации: 14.10.2019

Статья просмотрена: 96 раз

Библиографическое описание:

Гасанов, И. Р. Решение задачи о плоскорадиальной неустановившейся фильтрации газа к скважине методом последовательной смены стационарных состояний с учетом влияния начального градиента / И. Р. Гасанов, М. А. Джамалбеков. — Текст : непосредственный // Молодой ученый. — 2019. — № 42 (280). — С. 11-15. — URL: https://moluch.ru/archive/280/62751/ (дата обращения: 18.12.2024).



Как известно, метод последовательной смены стационарных состояний (ПССС) основан на следующих предпосылках: в каждый момент времени существует конечная возмущенная область, в которой происходит движение газа к скважине; движение внутри возмущенной области стационарно; размер возмущенной области определяется из уравнения материального баланса [1,2]. В данной статье предложено решение задачи о притоке газа к скважине методом последовательной смены стационарных состояний с учетом влияния начального градиента.

Ключевые слова: газ, возмущенная область, начальный градиент, радиус, давление.

As is known, the method of sequential change of stationary states (SCSS) is based on the following assumptions: at each time there is a finite perturbed area in which the gas moves to the well; the movement within the perturbed area is stationary; the size of the perturbed area is determined from the material balance equation [1,2]. This article proposes a solution to the problem of gas inflow to the well by the method of sequential change of stationary states, taking into account the influence of the initial gradient.

Keywords: gas, perturbed area, initial gradient, radius, pressure.

Дифференциальное уравнение движения газа с учетом влияния начального градиента имеет следующий вид:

(1)

или

(2)

Используя формулу для плотности м (2) и провода некоторые преобразования, получаем:

(3)

или

Интегрируя, получаем его общее решение в виде:

(4)

Постоянные интегрирования и находятся из граничных условий, которые в данном случае можно записать в виде:

при ,

при .

Представляя граничные условия в общее решение (4) находим:

,

,

откуда

(5)

(6)

Подставляя (5) и (6) в (4) получаем закон распределения давления в плоскорадиальном потоке:

(7)

Градиент давления и скорость фильтрации определяем, взяв производную правой и левой части (7):

(8)

(9)

Тогда для дебита получается следующая формула:

(10)

Для решения поставленной задачи сначала определим средневзвешенное по объему порового пространства пластовое давление в плоскорадиальном потоке газа. Оно определяется по формуле

(11)

в нашем случае ,

(12)

а давление определяется по формуле (7). Так как в первой фазе радиус контура возмущенной области зависит от времени, то пусть в полученных формулах . Тогда учитывая формулы (7) и (12) в (11) получаем:

(13)

Здесь имеется как в правой, так и в левой части выражения под знаком интеграла. Чтобы получить выражение для в правой части вместо подставим . Тогда получаем из (13) следующее выражение:

(14)

Делая подстановку

,

где и удержав два первых члена ряда получаем:

(15)

Далее, учитывая (15) и принимая метод, интегрируя по частям для выражение (14), подставляя пределы интегрирования, произведя преобразование и пренебрегая членами получаем для следующее выражение:

(16)

Так как отбор газа происходит с постоянным дебитом , отобранная масса газа к моменту t равна .

Начальный запас газа (при ) в зоне пласта радиусом равен

(17)

Текущий запас газа выразим через средневзвешенное давление :

(18)

Таким образом, (19)

Подставляя в (19) формулы (10), (16), (17), (18), получаем

или

(20)

где , ,,

(21)

Здесь находится методом установившихся отваров. Как видим, при мы получаем закон движения границы возмущенной области без учета влияния начального градиента,

(22)

При появлении начального градиента , радиус границы возмущения уменьшается. Это можно установить сравнением правых частей формул (20) и (22).

Таким образом, в данной статье получены приближенные формулы для определения размера области возмущения при фильтрации газа с учетом влиянии начального градиента.

Литература:

  1. Подземная гидравлика. Учебник для вузов./ Л. С. Басниев, А. М. Власов, И. Н. Кочина, В. М.Максимов. — М.:Недра, 1986.303 с.
  2. Чарный И. А. Подземная гидродинамика. М.: Гостоптехиздат, 1963.
Основные термины (генерируются автоматически): начальный градиент, возмущенная область, учет влияния, формула, SCSS, общее решение, последовательная смена.


Похожие статьи

К вопросу фильтрации газа при двучленном законе фильтрации с учетом влияния начального градиента давления

Как известно, часто в газовых скважинах происходит нарушение линейного закона Дарси. Обычно это происходит около призабойной зоны. В связи с этим расчеты, связанные с эксплуатацией и исследованием газовых скважин, приводятся обычно по двучленному зак...

Решение задачи плоскорадиальной неустановившейся фильтрации упругой жидкости методом Г. П. Гусейнова с учетом влияния начального градиента

Метод «усреднения» Г. П. Гусейнова заключается в том, что в дифференциальном уравнении упругого режима производная от давления по времени усредняется по всей возмущенной области и заменяется некоторой функцией времени, значение которой определяетс...

Приток жидкости к произвольному числу (n) скважин в пласте с удаленным контуром питания с учетом влияния начального градиента давления

Как известно, проблема интерференции, т. е. взаимодействия скважин, является одной из важных задач в нефтяной промышленности. При интерференции скважин под влиянием изменения режима работы одной скважины изменяются дебиты, забойные давления других ск...

Определение времени релаксации при фильтрации неравновесной жидкости в пористой среде с учетом влиянии начального градиента

Как известно, если скорость изменения состояния системы значительно меньше скорости изменения внешних условий, то процесс является неравновесным. При фильтрации вязкоупругой жидкости в пористой среде ее внутреннее напряжение стремится к равновесному...

Приток газа к произвольному числу скважин в пласте с удаленным контуром питания с учетом влияния начального градиента давления

Как известно, проблема интерференции, т. е. взаимодействия скважин, является одной из важных задач в газовой промышленности. При интерференции скважин под влиянием изменения режима работы одной скважины изменяются дебиты, забойные давления других скв...

Определение времени восстановления установившейся фильтрации газа в пористой среде

Время перехода из нестационарного состояния в стационарное является одним из важных параметров, характеризующих процесс фильтрации газа в пористой среде. В данной статье сделана попытка определить это время.

О трехчленном законе фильтрации газа с учетом влияния начального градиента и инерционных сил

Приведенные исследования показывают, что наличие начального градиента имеет место не только на нефтяных, но и на газовых месторождениях. Кроме того, начальный градиент в основном не остается неизменным в процессе разработки, а часто меняется. Существ...

Определение гидравлического сопротивления при фильтрации жидкости в зонально неоднородном пласте

Гидравлическое сопротивление является одной из важных физических величин, характеризующих фильтрацию жидкости в пористой среде. В данной статье делается попытка определения гидравлического сопротивления при фильтрации жидкости в зонально неоднородном...

Исследование задачи Коши для некоторого возмущенного алгебро-дифференциального уравнения первого порядка на явление погранслоя

Рассматривается задача Коши для алгебро-дифференциального уравнения первого порядка, возмущенного операторной добавкой в правой части, содержащей малый параметр. Перед производной находится вырожденный операторный коэффициент. Этот коэффициент являет...

Приближенный метод решения задачи теории упругого режима при одномерном поступательном движении жидкости с учетом влияния начального градиента

В статье рассматривается важная для практики задача о пуске скважины с постоянным дебитом, при фильтрации в пласте вязкопластичной жидкости с предельным градиентом давления. Задача решена методом «усреднений» для одномерного поступательного потока уп...

Похожие статьи

К вопросу фильтрации газа при двучленном законе фильтрации с учетом влияния начального градиента давления

Как известно, часто в газовых скважинах происходит нарушение линейного закона Дарси. Обычно это происходит около призабойной зоны. В связи с этим расчеты, связанные с эксплуатацией и исследованием газовых скважин, приводятся обычно по двучленному зак...

Решение задачи плоскорадиальной неустановившейся фильтрации упругой жидкости методом Г. П. Гусейнова с учетом влияния начального градиента

Метод «усреднения» Г. П. Гусейнова заключается в том, что в дифференциальном уравнении упругого режима производная от давления по времени усредняется по всей возмущенной области и заменяется некоторой функцией времени, значение которой определяетс...

Приток жидкости к произвольному числу (n) скважин в пласте с удаленным контуром питания с учетом влияния начального градиента давления

Как известно, проблема интерференции, т. е. взаимодействия скважин, является одной из важных задач в нефтяной промышленности. При интерференции скважин под влиянием изменения режима работы одной скважины изменяются дебиты, забойные давления других ск...

Определение времени релаксации при фильтрации неравновесной жидкости в пористой среде с учетом влиянии начального градиента

Как известно, если скорость изменения состояния системы значительно меньше скорости изменения внешних условий, то процесс является неравновесным. При фильтрации вязкоупругой жидкости в пористой среде ее внутреннее напряжение стремится к равновесному...

Приток газа к произвольному числу скважин в пласте с удаленным контуром питания с учетом влияния начального градиента давления

Как известно, проблема интерференции, т. е. взаимодействия скважин, является одной из важных задач в газовой промышленности. При интерференции скважин под влиянием изменения режима работы одной скважины изменяются дебиты, забойные давления других скв...

Определение времени восстановления установившейся фильтрации газа в пористой среде

Время перехода из нестационарного состояния в стационарное является одним из важных параметров, характеризующих процесс фильтрации газа в пористой среде. В данной статье сделана попытка определить это время.

О трехчленном законе фильтрации газа с учетом влияния начального градиента и инерционных сил

Приведенные исследования показывают, что наличие начального градиента имеет место не только на нефтяных, но и на газовых месторождениях. Кроме того, начальный градиент в основном не остается неизменным в процессе разработки, а часто меняется. Существ...

Определение гидравлического сопротивления при фильтрации жидкости в зонально неоднородном пласте

Гидравлическое сопротивление является одной из важных физических величин, характеризующих фильтрацию жидкости в пористой среде. В данной статье делается попытка определения гидравлического сопротивления при фильтрации жидкости в зонально неоднородном...

Исследование задачи Коши для некоторого возмущенного алгебро-дифференциального уравнения первого порядка на явление погранслоя

Рассматривается задача Коши для алгебро-дифференциального уравнения первого порядка, возмущенного операторной добавкой в правой части, содержащей малый параметр. Перед производной находится вырожденный операторный коэффициент. Этот коэффициент являет...

Приближенный метод решения задачи теории упругого режима при одномерном поступательном движении жидкости с учетом влияния начального градиента

В статье рассматривается важная для практики задача о пуске скважины с постоянным дебитом, при фильтрации в пласте вязкопластичной жидкости с предельным градиентом давления. Задача решена методом «усреднений» для одномерного поступательного потока уп...

Задать вопрос