В данной работе предлагается новый механизм повышения КПД: фотоэлементы на основе кремния, с формированием бинарных элементарных ячеек в решетке кремния. Управляя концентрацией, структурой, составом бинарных элементарных ячеек с участием примесных атомов с таблицы Менделеева 3–5 группы можно не только управлять шириной запрещенной зоны, но также варьировать и другими фундаментальными параметрами. Показано, что существует определенное термодинамическое условие легирования кремния, при котором происходит самоорганизация бинарных элементарных ячеек. Особенность предлагаемой технологии заключается в том, что при формировании бинарных элементарных ячеек практически не нарушается химическая связь в кремнии, что позволяет формировать различные ассоциации бинарных элементарных ячеек вплоть до образования нанокристаллов полупроводниковых соединений AIIIBV. Это и есть новый подход к получению более эффективных материалов для фотоэнергетики на основе кремния.
Ключевые слова: солнечный элемент (СЭ), кремний, бинарные элементарные ячейки, КПД, примеси.
В настоящее время на основе различных полупроводниковых материалов разработаны и производятся следующие поколения солнечных элементов (СЭ):
- СЭ на основе монокристаллического кремния.
- Многокаскадные тонкоплёночные СЭ на основе AIIIBV и СЭ на основе аморфных материалов
- СЭ на основе полимерных материалов. [1]
Каждое из этих поколений СЭ имеет свои преимущества и недостатки.
Первое поколение обладает неплохим КПД, стабильными параметрами и большим сроком службы – более 50 лет. Однако для изготовления таких СЭ требуется слишком много полупроводникового материала, который в себестоимости готовой продукции занимает более 50 %, что затрудняет дельнейшее снижение цены данных СЭ.
Второе поколение СЭ на основе AIIIBV (GaP, InP, GaAs) и особенно многокаскадные СЭ обладают максимальным КПД, более 50 %, относительно стабильными параметрами, однако технология изготовления таких СЭ требует слишком больших расходов. Так для получения 1 кВт*ч энергии на основе данных СЭ требуется в 50 раз больше средств, чем для СЭ на основе кремния. Поэтому такие СЭ в основном используются для электропитания космических летательных аппаратов и находят весьма незначительное применение в наземных условиях.
А СЭ на основе аморфного кремния имеет КПД около 8–10 %, достаточно дешёвые, гибкие, пластичные, тонкие плёнки, удобные для эксплуатации в различных условиях. Однако, главным их недостаткам является существенная деградация параметров со временем.
Третье поколение СЭ на основе полимерных материалов имеет КПД около 12–15 %. Однако, широкомасштабное применение таких элементов затруднено из-за технологии получения материалов.
CЭ II поколение
Рис.1.
Поэтому возникает вопрос, что ожидает полупроводниковую фотоэнергетику в ближайшем будущем. Актуален вопрос разработки новых полупроводниковых материалов или управление фундаментальными параметрами существующих полупроводниковых материалов. Однако в настоящее время решение данного вопроса практически отсутствует.
Одним из реальных способов повышения параметров фотоэлементов является использование части спектра солнечного излучения с энергией hυ
Наша научная школа в последние 15–20 лет занимается разработкой физических основ и технологии объемнонаноструктурированного полупроводникового кремния на основе формирования кластеров примесных атомов в решетке с управляемой структурой, составом, размером и концентрацией [2], [3], [4]. Сущность данной идеи заключается в определении оптимальных термодинамических условий формирования кластеров с максимальным участием всех введенных примесных атомов в процессе кластерообразования. Это достигается на основе разработанной нами технологии «низкотемпературного» легирования с последующей термообработкой при определенных условиях [5], [6].
Такая технология позволяет формировать в решетке кремния простые атомные, бинарные (мономолекулярные) и более сложные полимолекулярные кластеры, образующие квантовые точки с новыми физическими свойствами. В этом плане представляет большой научный и практический интерес формирование бинарных кластеров с участием элементов третьей, пятой и второй, шестой групп.
Как известно, элементы третьей и пятой групп при их введении по отдельности в основном находятся в узлах решетки, образуя твердые растворы замещения и выступают в качестве акцепторов и доноров соответственно. Поэтому эти элементы являются технологическими примесями и широко используются для получения n и р типа проводимости кремния с заданными физическими параметрами слоев.
Максимальная растворимость этих примесей в кремнии составляет 1020–1021см-3.
Рис.2. Кремний p-типа; кремний n-типа
В условиях последовательного легирования кремния с последующей термообработкой при определенных термодинамических условиях можно сформировать в решетке кремния бинарные кластеры с участием этих примесных атомов. При этом атомы третьей и пятой групп будут находиться рядом и занимать два соседних узельных положения в решетке (образуя электронейтральные молекулы (АIII-ВV+). В результате этого формируется новая элементарная ячейка типа (Si2AIII-BV+).
Изменение свободной энергии системы можно описать в виде:
В данном случае значение E3 практически равно нулю, E2 имеет малую величину. Поэтому изменение свободной энергии системы в основном определяется величиной E1.
Все это стимулирует самоорганизацию и самоперестройку.
Рис.3. Новая элементарная ячейка
Si2Ga-P+(Si2AIIIBV) в кремнии Ga-P+(AIIIBV) в кремнии
Рис.4. Ассоцация элементарных ячеек Ga-P+(AIIIBV)в кремнии
Как показали результаты исследования, с ростом концентрации введенных примесных атомов происходит ассоциация молекул с образованием более сложных структур, в конце концов образующих зародыши новой фазы полупроводникового соединения, то есть происходит формирование нанокристаллов полупроводниковых соединений AIIIBV в решетке кремния.
При этом возникает вопрос, можно ли сформировать элементарные ячейки всех полупроводниковых соединений типа АIIIВV? Как показывают расчеты и анализ экспериментальных данных, существенную роль здесь играют физические, химические и диффузионные параметры примесных атомов.
На основе расчета и анализа экспериментальных данных определены возможности формирования молекул из атомов третьей и пятой групп:
– Наиболее подходящие пары — BBi; AlP; GaP;
– Подходящие пары — BSb; AlAs; GaAs;
– Возможные пары — BAs; GaSb; InP;
– Не подходящие пары — остальные соединения.
В новых бинарных элементарных ячейках Si2Ga-P+ валентные электроны, участвующие в ковалентных связах, в зависимости от значения электроотрицательности атомов Si, а также атомов III и V групп должны иметь различные энергии связи.
Зонная структура кремния с бинарными ячейками AIIIBV
– I обогащенная область кремния с нанокристаллами AIIIBV (0,7–1 мкм).
– II обогащенная область кремния с элементарными ячейками AIIIBV (0,7–3 мкм).
– III область кремния с элементарными ячейками AIIIBV (1–5 мкм).
Рис. 5. Спектральная зависимость фотоЭДС и Iкз изготовленных лабораторных экземпляров фотоэлементов на основе кремния с элементарными ячейками GaSb при мощности ИК излучения 5х10–6 Вт на 1 см2
Рис.6. Промышленные фотоэлементы на основе кремния
Аналогичные результаты были получены в фотоэлементах с другими типами бинарных кластеров. В этом случае область спектральной фоточувствительности расширяется до λ=3,8 мкм.
Рис.7.
Для подтверждения этих идей ниже приводятся некоторые наши экспериментальные данные.
Спектральная зависимость снималась при наличии кремниевых фильтров, чтобы ограничить возможность попадания фонового света с hν>Eg. Как видно из рис.7, в этих образцах фотоответ начинается при λ=2,5 мкм и фототок быстро непрерывно растет и достигает аномально большого значения уже при λ=1,5–1,6 мкм. Величина фототока при этом практически не отличается от фототока в области собственного поглощения.
В этом случае практически весь спектр инфракрасного излучения Солнца будет участвовать в фотогенерации носителей, то есть появляется возможность создания не только более эффективных фотоэлементов, но и фотоэлементов, работающих в основном в ИК области спектра (например, для термофотоэлектрического преобразования тепловой энергии).
Это означает, что в ближайшем будущем на основе кремния с бинарными нанокластерами можно создать многокаскадные «кремниевые» фотоэлементы, заменяющие дорогостоящие многокаскадные фотоэлементы на основе полупроводниковых твердых растворов элементов третьей, пятой, и второй, шестой групп. На основе таких материалов можно решить многие другие проблемы фотоники и оптоэлектроники. В таких материалах можно предсказать существенное расширение спектральной области фоточувствительности как в ультрафиолетовую, так и в инфракрасную области спектра. Следует отметить, что поглощение света при этом может происходить путем прямых межзонных переходов, т.к. атомы элементов II и VI группы в этом случае действуют не как легирующие примеси, а выступают в качестве основы новых элементарных ячеек. Прямозонность нанокристаллов является залогом их высокой фоточувствительности в широком спектральном диапазоне.
Таким образом, создавая путем простой технологии диффузии примесные кластеры с необходимыми параметрами в решетке распространенного и дешевого материала электронной техники — кремния, можно получить совершенно новый класс полупроводниковых материалов. Это дает начало новому научному направлению в области полупроводникового материаловедения.
Литература:
- В. А. Миличко, А. С. Шалин, И. С. Мухин, А. Э. Ковров, А. А. Красилин, А. В. Виноградов, П. А. Белов, К. Р. Симовский журнал «Успех физических наук» том186 № 8. Август,2016г.
- Baxadirxanov M. K., Askarov Sh.I., Norkulov N. Phys. Stat. Sol. (a) 1994, 142, p. 339
- Baxadirxanov M.K, Iliyev X.M, Saparniyazova Z. M. Inorganic Materials 2015, 51(8): 767
- Baxadirxanov M.K, Toshboyev T. U.. Inorganic Materials 2011, 47(5): 479
- Baxadirxanov M.K, Isamov S.B, Mavlyanov G. X. Technical Physics Letters 2009, 35(8): 741–744
- Baxadirxanov M.K, Abduraxmonov B. A. ДАН РУз 2013, 3: 29–33