В настоящее время одним из наиболее действенных способов разуплотнения почвы является механическая обработка. Несмотря на разные оценки основной обработки стерневых фонов, многие исследователи отмечают положительное воздействие плоскорезной основной обработки, в особенности в технологиях органического земледелия, на накопление влаги и физическое состояние корнеобитаемого слоя, рост и развития растений и урожайность различных культур [1, с. 350].
Анализ конструкции имеющихся рабочих органов говорит о том, что в условиях Северного Казахстана, для которого характерным является переуплотнение почв и повышенная твердость, выполнение данной технологической операции с соблюдением агротехнических требований представляет техническую проблему и ее решение является актуальным для сельскохозяйственного машиностроения Республики Казахстан [2, с.64].
Основными недостатками существующих рабочих органов для безотвальной основной обработки почв с повышенной плотностью и твердостью является низкая сохранность стерни, заделка измельченных растительных остатков в поверхностный слой почвы, наличие крупных почвенных комков на поверхности поля и высокие удельные затраты энергии.
Для решения поставленной проблемы нами были проведены теоретические и экспериментальные исследования по обоснованию параметров рабочего органа для основной обработки уплотненных почв.
В результате проведенных теоретических исследований было установлено, что из всех типов рабочих органов наиболее работоспособным является плоскорежущая лапа шириной захвата 0,6–1,0 м, с углом установки долота и лемехов ко дну борозды 29–32 градуса.
Для окончательного уточнения ширины захвата рабочего органа были проведены экспериментальные исследования в полевых условиях. Для проведения экспериментальных исследований были изготовлены плоскорежущие рабочие органы различной ширины захвата. Рабочие органы поочередно устанавливались на лабораторно-полевую установку, представленную на рисунке 1. На продольный брус рамы устанавливались плоскорежущие рабочие органы шириной захвата от 0,6 до 1,0 м с углами установки лемехов и долота 30 градусов. Изменения углов установки лемехов и долота проводилось на плоскорежущих рабочих органах шириной захвата 0,7 и 0,8 м путем постановки под крепежные болты регулировочных пластин.
|
|
а) общий вид |
б) вид в работе |
Рис. 1. Лабораторно-полевая установка |
|
Замеры тягового сопротивления, крошения обрабатываемого слоя и сохранности стерни выполнялись при постоянной скорости. Установочная глубина обработки во всех опытах была одинаковая и равна 30 см.
В основу методики проведения экспериментальных исследований заложена действующая нормативная документация: определение условий экспериментальных исследований — ГОСТ 20915–2011, качество выполнения технологического процесса — ГОСТ 33736–2016, энергетическая оценка – ГОСТ Р 52777–2007.
Состояние обрабатываемого слоя в период исследований характеризовалось низкой влажностью в пределах 14–19 %, высокой твердостью 4,7–7,1МПа. Обилие зимней и весенней влаги в почве и резкое повышение температуры в конце июня способствовали образованию уплотненного почвенного слоя на глубине ниже 10 см. Почвенные условия являются типичными для полей, на которых применялись элементы минимальной и нулевой технологий возделывания зерновых культур.
Результаты экспериментальных исследований подтвердили теоретические расчеты о влиянии углов установки долота и лемехов ко дну борозды на тяговое сопротивление. С увеличением углов установки долота и лемехов удельное тяговое сопротивление снижается, достигает минимума при углах 29–32 градуса, а затем возрастает (рисунок 2).
|
|
|
– рабочий орган Вр = 0,8 м; |
|
- рабочий орган Вр = 1,0 м; Vр = 2,2 м/с |
Рис. 2. Влияние углов установки долота и лемехов α на удельное тяговое сопротивление плоскорежущих рабочих органов Руд |
|
Крошение почвенного слоя в зоне работы лемехов (глубина 15–30 см) с увеличением ширины захвата рабочего органа снижается, а сохранность стерни возрастает (рисунок 3).
|
||||
|
- крошение |
|
- сохранность стерни |
|
1 — слой 15–30 см; 2- слой 0–30 см, Vр = 2,2 м/с |
||||
Рис. 3. Влияние ширины захвата рабочего органа Вр на крошение почвенного слоя П и сохранность стерни на поверхности поля С |
||||
В зоне работы лемеха крошение обрабатываемого слоя тем выше, чем меньше ширина захвата рабочего органа. Такая же закономерность прослеживается и по всему обрабатываемому слою. Увеличение крошения обрабатываемого слоя с уменьшением ширины захвата лапы происходит за счет стойки. Максимальное крошение получено с рабочим органом шириной захвата 0,6 м. Однако при этом наблюдается наименьший процент сохранности стерни на поверхности поля.
Углы установки долота и лемехов и ширина захвата рабочего органа существенно влияет на качество крошения обрабатываемого слоя и на сохранность стерни на поверхности. Установлено, что с увеличением углов установки долота и лемехов ко дну борозды крошение основного слоя возрастает, а сохранность стерни снижается (рисунок 4).
По результатам проведенных экспериментальных исследований установлено, что по комплексному показателю крошения почвенного слоя, сохранность стерни на поверхности и удельному тяговому сопротивлению в данных почвенных условиях лучшие результаты получены на вариантах рабочих органов с шириной захвата 0,7 и 0,8 м с углом установки долота и лемехов 30 градусов.
|
|||
|
- крошение слоя 15–30 см |
|
- сохранность стерни |
Вр = 0,8 м, Vр = 2,2 м/с |
|||
Рис. 4. Влияние углов установки долота и лемехов α на крошение почвенного слоя П и сохранность стерни на поверхности поля С |
|||
Литература:
- Edwards D. R., White L. J., Munkholm C. G., Lamande M. Modeling the readiness of soil for different methods of tillage // Soil and tillage research. — 2016. — № 155. — С. 339–350.
- Куваев А. Н.. Основная обработка стерневых полей северных зерносеющих регионов казахстана и современные орудия для её выполнения // 3i Интеллект, идея, инновация. Многопрофильный научный журнал. — 2018. — № 2. — С. 57–64.