Создана установка по исследованию вытяжной системы вентиляции. Найден перепад давлений на входе и выходе участка вентиляционной трубы. Произведен аэродинамический расчёт вытяжной вентиляционной системы. Осуществлен подбор размеров поперечных сечений воздуховодов по скоростям движения воздуха. Рассчитаны потери давления на трение, потери давления при местных сопротивлениях в вентиляционной сети. Определено динамическое давление в системе.
Ключевые слова: вентиляция, вентилятор, воздуховод, воздухозаборное устройство, КПД, потери давления, критерий Рейнольдса.
Введение. Вытяжная система вентиляции предназначена для удаления воздуха из помещения. При удалении в помещении создаётся пониженное давление, за счёт которого в вентилируемое помещение поступает наружный воздух. Эта система применяется в случае, когда вредные выделения в помещении не должны распространяться на соседние, например, для вредных цехов и лабораторий химического (биологического) профиля. Вентиляция является процессом удаления из помещения загрязнённого воздуха и подачи в него свежего. Основной характеристикой системы вентиляции, является её производительность. Она оценивается объёмным расходом, численно равным количеству воздуха в м3, перемещаемого системой вентиляции в течение 1 часа.
Основные теоретические сведения. На сегодняшний день существует очень большое количество разновидностей вентиляций. Системы механической вентиляции разделяют на общеобменные, местные и смешанные [1].
Общеобменная вентиляция предназначена для удаления избытков теплоты, влаги и вредных веществ во всём объёме помещения. Применяется в тех случаях, когда вредные выделения поступают непосредственно в воздух помещения и рабочие места н фиксированы, а распространяются по всему помещению.
Местная вентиляция используется для обеспечения допустимых условий в отдельных рабочих зонах и удаляет вредные выделения непосредственно у источника их образования. При смешанной системе вентиляции часть вредных выделений удаляется местной вентиляцией, а часть — общеобменной.
Общеобменную вентиляцию по способу подачи и удаления воздуха разделяют на приточную. Вытяжную и приточно-вытяжную (рис.1).
Рис. 1. Схема систем общеобменной механической вентиляции: а-приточной; б-вытяжной; в-приточно-вытяжной
При использовании приточной системы вентиляции в помещении создаётся избыточное давление, за счёт которого воздух уходит через окна и двери наружу или в другие помещения. Приточную систему применяют в случае, когда вентилируемое помещение должно быть защищено от проникновения в него загрязнённого наружного воздуха и нежелательно попадание загрязнённого воздуха из соседних помещений. Так, например, осуществляется вентиляция «чистых комнат» — помещений с высокими требованиями к запылённости воздуха, используемых в электронной, авиационной и других отраслях промышленности. Приточная система также возмещает объём воздуха, удаляемый местными отсосами или расходуемый на технологические нужды. Обычно она состоит из следующих элементов: воздухозаборного устройства, воздуховодов, фильтров для очистки воздуха, калориферов, которыми подогревается холодный наружный воздух, вентилятора, увлажнителя-осушителя воздуха и приточных воздухораспределителей (решётки, панели, насадки) [2].
Рис. 2. Устройство систем общеобменной механической вентиляции
При удалении воздуха вытяжной системой вентиляции (рис.1,б) в помещении создаётся пониженное давление, за счёт которого в вентилируемое помещение поступает воздух с соседних помещений или наружный воздух.
В состав вытяжной вентиляции (рис.2), как правило, входят: вытяжные воздухораспределители, через которые воздух удаляется из помещения, воздуховоды, вентиляторы, устройства для очистки воздуха от загрязнений и устройства для выброса воздуха в атмосферу.
В приточно-вытяжной вентиляции работают одновременно приточная и вытяжная системы. Расход воздуха, подаваемого в помещение, обычно равен расходу воздуха удаляемого помещения, но бывают и исключения.
Подача воздуха в системах вентиляции осуществляется за счёт вентиляторов.
Вентиляторами называют лопаточные машины с вращающимся ротором, служащие для перемещения воздуха или других газов при их относительном сжатии, не превышающем 1,3 коэффициента сжатия (под давлением 30 кПа). Подводимая к валу рабочего колеса вентилятора механическая мощность вследствие его вращения преобразуется в мощность воздушного потока. Существует типов вентиляторов. Тип, также как и название вентилятора, определяется направлением движения воздуха в рабочем колесе. В зависимости от этого вентиляторы подразделяются на осевые, в которых поток не меняет своего направления, перемещаясь вдоль оси своего колеса, радиальные, в которых направление потока на входе осевое, а на выходе меняется на 90о по радиусу рабочего колеса, и диагональные, в которых в отличие от радиальных угол поворота потока менее 90о.
Широкое распространение в системах вентиляции получил осевой вентилятор (рис.4), который содержит рабочее колесо, состоящее из втулки с насаженными на неё лопатками и размещённое в цилиндрическом кожухе. Во избежание ухудшение аэродинамических характеристик вентилятора зазор между кожухом и лопаткой должен быть минимальным. Вогнутой стороной лопатки должны быть обращены в сторону вращения. При их движении возникает воздушный поток в осевом направлении. При изменении направления вращения вентилятора изменяется и направление воздушного потока. Осевые вентиляторы выпускают с диаметром рабочих колёс до 2 м. Они характеризуются большой производительностью, но обладают малым напором. Не превышающим 1кПа [3].
Рис. 3. Схема осевого вентилятора: 1-коллектор; 2,4-твходной и выходной направляющие аппараты; 3- рабочее колесо; 5- кожух;6- обтекатель
В последнее время в системах вентиляции широко применяются канальные вентиляторы. Круглый канальный вентилятор(ри.4) является, по сути, вентилятором диагонального типа, удачно сочетающим в себе преимущества осевых и центробежных вентиляторов.
Рис. 4. Схема канального вентилятора
Работа вентилятора характеризуется рядом параметров, главными из которых являются производительность, давление, мощность, КПД [4].
Производительность, расход и подача вентилятора, определяется как объём газа, перемещаемого вентилятором в единицу времени. Производительность вентилятора зависит от конструкции, размеров и скорости движения рабочих органов вентилятора.
Давление, создаваемое вентилятором, численно равно энергии, сообщенной единице объёма газа, прошедшего через вентилятор. Часто это определение отожествляют с определением напора. Под напором понимают высоту столба жидкости плотностью, создающего гидростатическое давление, равное полному давлению, развиваемому вентилятором [5].
Мощность — это произведение создаваемого вентилятором давления, на расход определяет общее количество энергии, сообщаемой им потоку воздуха в единицу времени.
КПД вентилятора — это эффективность использования вентилятором подводимой к нему мощности оценивают КПД [6].
Аэродинамический расчёт вентиляционной системы.
Нами была создана установка по исследованию вытяжной системы вентиляции и методика расчета основных параметров этой системы.
Рис. 5. Экспериментальный стенд вытяжной вентиляции: 1,2,3-регулируемые воздухозаборники; 4-вентилятор ВКВ-100Е (250м3/ч); 5-воздуховод
Произвели аэродинамический расчёт вентиляционной системы по скоростям движения воздуха и определили потери давления в системе.
Потери давления в системах вентиляции складываются из потерь давления на трение и потерь давления в местных сопротивлениях, Па:
.
Потери давления на трение, Па,
где R — удельные потери давления на трение в гидравлически гладком канале, Па/м; l — длина участка воздуховода; n — поправочный коэффициент, который зависит от абсолютной эквивалентной шероховатости воздуховодов.
Удельные потери давления на трение, Па/м,
R=
R=
где λг- коэффициент гидравлического сопротивления трению для гидравлически гладкого канала; dэ- эквивалентный(гидравлический)диаметр воздуховода, м; Рд- динамическое давление, Па.
Коэффициент гидравлического сопротивления трению для гидравлически гладкого канала, при турбулентном режиме течения, рассчитывается по закону Блазиуса:
где 𝑅𝑒- критерий Рейнольдса.
Критерий Рейнольдса:
𝑅𝑒=
𝑅𝑒=
где υ-скорость движения воздуха в воздуховоде, м/с; ν-кинематическая вязкость воздуха, м2/с, d- диаметр сечения трубы [7].
Динамическое давление, Па,
Рд=,
Рд=
Потери давления в местных сопротивлениях, Па,
,
Па,
где сумма коэффициентов местных сопротивлений на расчётном участке воздуховода, коэффициенты местных сопротивлений на границе двух участков относят к участку с меньшим расходом; ρ-плотность воздуха, кг/м3.
Заключение (выводы). По собранной нами экспериментальной установке определили ряд параметров, характеризующих оптимальную работу вытяжной вентиляционной системы.
Проведено исследование, по которому определили потери давления в системе вентиляции. .
Рассчитано, что потери давления на трение в 9 раз больше потерь давления в местных сопротивлениях.
Литература:
- Бабакин Б. С. Альтернативные хладагенты и сервис на их основе: справочное руководство / Б. С. Бабакин, В. И. Стефанчук, Е. Е. Ковтунов — М.: Колос, 2000. — 160 с.
- Бабакин Б. С. Бытовые холодильники и морозильники: справочник / Б. С. Бабакин, В. А. Выгодин — Б. С. Бабакин, 1998. — 631 с.
- Бабенков Ю. И. Теоретические основы теплотехники: учеб. пособие / Ю. И. Бабенков [и др.] — Ростов н/Д: Издательский центер ДГТУ, 2010. — 290с.
- Воронин Г. И. Системы кондиционирования воздуха на летательных аппаратах: учеб. пособие/ Г. И. Воронин — М.: Машиностроение, 1973–444 с.
- Доссат, Рой Дж. Основы холодильной техники: учебник / Рой Дж. Доссат — М.: Легкая и пищевая промышленность,1984. — 520 с.
- Кругляк И. Н. Бытовые холодильники (устройство и ремонт): учеб. пособие / И. Н. Кругляк — М.: Легкая индустрия, 1974, — 205с.
- Нащокин В. В. Техническая термодинамика и теплопередача: учеб. пособие для вузов / В.В Нащокин. 3-е изд., испр. и доп. — М.: Высш.школа, 1980.— 469 с.