За последние годы система трудового воспитания в школах в последние годы нуждается в больших изменениях. Уроки труда (технологии), стандарты под которые разрабатывались еще в далекие советские годы, устаревают морально и физически. Как показало исследование, и уровень оснащения классов для уроков труда в нашей стране в большинстве своем остается сильно устаревшим. В то же время, само понятие труда связано с основами всех наук и воспитывает в человеке многие качества: дисциплину, осторожность, настойчивость, глазомер, усидчивость, внимательность, и является важным аспектом в образовании человека.
Параллельно с этим, в последнее время существенно возрастает спрос на развитие инженерных навыков и технические специальности у молодежи: в школах и университетах (в крупных городах) открываются «инженерные классы”, технопарки и другие площадки, предоставляющие возможность детям реализовывать свои идеи на практике, и обучают работать руками. Наблюдается подъем престижа профессии инженера, а на современных промышленных предприятиях уровень заработной платы уже достигает такого уровня, чтобы туда стремилась молодежь. При этом подход на современных предприятиях к производству также существенно меняется, уровень автоматизации современного оборудования неизменно растет, развиваются «умные” производства, появляются новые технологии производства, что в итоге ведет к реализации четвертой промышленной революции.
В представленной работе предлагается реализация станочных комплексов, основанных на базе отечественных комплектующих (включая систему управления) и методики обучения по работе с ними для базового обучения техническим специальностям учащихся общеобразовательных учреждений. Применение подобной методики на уроках технологии будут включать в себя сразу несколько взаимосвязанных предметов: трудовое обучение, информатику, математику, геометрию, черчение, физику. Это позволит вывести на новый уровень уроки технологии в школах, привить навыки к инженерной работе и труду, при этом повысив интерес школьников работой с современным оборудованием, и в итоге решить сразу две задачи — подготовка кадров начиная с самого юного возраста, а также задача трудового воспитания.
Важным аспектом разрабатываемого продукта является его отечественное исполнение, что обеспечивает импортонезависимость, а также возможность полноценной поддержки продукта у заказчиков, в отличии от такого подхода, когда оборудование закупается у сторонних производителей (в основном китайского производства) [1].
Таким образом, целью проекта является: разработка портативных модульных станочных комплексов для реализации базовой технической и инженерной подготовки обучающихся и повышение трудового воспитания в общеобразовательных учреждениях в соответствии с последними мировыми тенденциями развития технологий и промышленности.
Основные задачи, необходимые для достижения цели:
- Исследование нынешнего состояния уроков технологии в школах и других общеобразовательных учреждениях. Исследование сторонних площадок (инженерные классы, технопарки) для развития инженерных навыков и технической подготовки детей.
- Анализ имеющихся компактных станочных решений для дерево- и металлообработки.
- Разработка функциональной схемы построения модульных станочных комплексов для реализации различных видов обработки.
- Адаптирование системы управления «АксиОМА Контрол” для задачи управления портативными станками
- Разработка экспериментального образца портативного станочного комплекса с адаптированной системой управления.
- Разработка методики обучения школьников работе с портативными станочными комплексами.
В ходе проведения работы над проектом ожидается получение ряда результатов, обладающих научной новизной:
− разработка модульной быстропереналаживаемой конструкции и кинематической схемы портативных станков для реализации различных видов обработки;
− разработка структурной модели построения системы управления компактными станочными комплексами;
− создание новых алгоритмов, интегрированных в систему управления для реализации основных технологических операций;
− разработка методики обучения школьников и учащихся других общеобразовательных заведений работе с промышленным оборудованием, включая все фазы производства, начиная от чертежа детали, и заканчивая практическим изготовлением детали.
Разрабатываемый продукт представляет собой программно-аппаратный комплекс, состоящий из компактного станка (фрезерный / гравировальный / лазерный / аддитивные технологии), позволяющий выполнять обработку дерева или металла или создавать детали из модельного пластика на базе аддитивных технологий (3D принтер), и системы управления, реализованной на базе отечественных компонентов и имеющихся наработок. Отличительными признаками разрабатываемого продукта, в первую очередь, является его комплектность (станок + система управления + методика обучения от одного производителя) при максимальном уровне отечественных компонентов и наработок. Изготовление аппаратной части станков планируется реализовывать на базе имеющейся технической базы университета МГТУ «Станкин”, а в будущем планируется сотрудничество с его индустриальными партнерами. Система управления реализуется на базе отечественной системы ЧПУ «АксиОМА Контрол”, разрабатываемой также в МГТУ «Станкин”. Это обеспечивает импортонезависимость, а также возможность полноценной оперативной поддержки и выполнения сервисных работ по оборудованию у заказчиков, в отличии от подхода, при котором оборудование закупается у различных производителей, в том числе зарубежного производства. В то же время, процесс обработки и подготовки к ней является максимально приближенным к работе реальным производственным оборудованием, установленным на современных предприятиях [1–3].
Рис. 1. Обобщенная схема построения программно-аппаратного комплекса
Подобными комплексами планируется оснащать учебные классы для проведения уроков технологии в школах и других общеобразовательных учебных заведений и осуществления подготовки обучающихся базовым инженерным и техническим навыкам. Для проведения обучения планируется разработка и апробирование комплекта методических указаний. Предполагаемая организация процесса обучения представлена на рисунке 2.
Рис. 2. Организация процесса обучения
Разработка подобных компактных станочных решений позволит применять их как для небольших производств, так и для подготовки профильных специалистов по работе с системами числового программного управления, а также их программированию. Внедрение разрабатываемых программно-аппаратных комплексов в учебные заведения (школы, техникумы, университеты) позволит решить сразу две задачи: подготовка инженерных кадров начиная с самого юного возраста, а также решение актуальной задачи трудового воспитания.
Литература:
- Григорьев С. Н. Принципы создания многофункциональной системы числового программного управления технологическим оборудованием на базе общего ядра с открытой модульной архитектурой // Приборы и системы. Управление, контроль, диагностика. 2011. № 05. С. 1–11.
- Мартинов Г. М., Нежметдинов Р. А. Модульный подход к построению специализированной системы ЧПУ для обрабатывающих центров наклонной компоновки // СТИН, 2014. № 11. с.28–32
- Мартинов Г. М., Никишечкин П. А., Григорьев А. С., Червоннова Н. Ю. Организация взаимодействия основных компонентов в системе ЧПУ АксиОМА Контрол для интеграции в нее новых технологий и решений // Автоматизация в промышленности. 2015. № 5. с.10–15.