Ключевые слова: индуцированные плюрипотентные стволовые клетки, дифференцировка, соматические и эмбриональные стволовые клетки.
Открытие генов, отвечающих за свойства ЭСК, присутствующих во всех соматических клетках организма, но находящихся в неактивном состоянии привело к созданию методов перепрограммирования соматических клеток в плюрипотентные. Понимание этого и появление методов воздействия на гены внутри живой клетки привели к идее выявить гены, необходимые и достаточные для поддержания клетки в плюрипотентном состоянии. Исследования велись с целью выяснения возможности перевода «спящих» генов в активное состояние. [1]
Благодаря научным открытиям, совершенным в XXI веке, ученые разработали способ получения ИПСК путем перепрограммирования генома дифференцированных клеток.
Синья Яманака вместе со своей командой получили ИПСК из обычных соматических в 2006 году. Данные клетки были такими же плюрипотентными пролиферативными, как и эмбриональные стволовые клетки. В основе превращения лежало то, что через генетический аппарат соматической клетки можно искусственно «отключить» программу дифференциации. [2]
Техники перепрограммирования.
Выделяют два основных метода: интегративный и неитегративный
Интегративный. Первые линии ИПСК были получены методом трансдукции факторов OSKM с помощью ретровирусного вектора в мышиные фибробласты. Суть метода состоит в том, что гены, кодирующие факторы OSKM, были интегрированы в геном модифицированного ретровируса, и этим вирусом «заражались» фибробласты. Геном вируса встраивался в геном фибробластов, и гены факторов OSKM начинали экспрессироваться в клетках. Запускался каскад биохимических реакций, которые превращали клетку с нулевой потенцией в индуцированную плюрипотентную клетку. И это превращение было подтверждено строгим скринингом 24 факторов, связанных с плюрипотентностью. Эффективность перепрограммирования клеток человека составляет от 0,01 до 0,02 %.
OCT4 является ядерным транскрипционным фактором семейства POU, который играет критическую роль в самообновлении и плюрипотентности. На начальных этапах эмбрионального развития в плюрипотентных клетках OCT4 и SOX2 функционируют совместно, стимулируя транскрипцию нескольких генов-мишеней, включая NANOG, FGF-4, UTFl, FBX15, microRNA-302 и даже самих SOX2 и OCT4. Сверхэкспрессия транскрипционных факторов OCT4, SOX2 и C-MYC также может обеспечивать приобретение клетками плюрипотентности. [3]
Неитегративные методы
– Метод получения ИПСК из стромальных клеток жировой ткани человека при использовании невирусных векторов, содержащих миникольце-вую ДНК с кассетой генов Lin28, Nanog, Sox2, 0^4 и ОЕР (зеленый флуоресцентный белок), имел эффективность трансдукции около 0,005 %
– Использование эписомальных плазмид, которые применяются для получения ИПСК из пуповинной крови и клеток периферической крови. В этом методе используются специально сконструированные плазмиды, содержащие элементы, например EBNA1/OriP, позволяющие экспрессию привнесенных генов без встраивания в геном клетки, а также размножение плазмиды и передачу ее дочерним клеткам при делении. Для трансфекции может одновременно использоваться несколько плазмид, содержащих отдельные гены OSKM, либо одна плазмида со всем набором генов.
– Неинтегративные методы без использования ДНК. Одноцепочечная РНК вируса Сендай является привлекательной альтернативой плазмидам на основе ДНК для получения индуцированных стволовых клеток, поскольку геномный материал не проникает в ядро клетки-хозяина, не встраивается в геном хозяина и может быть легко удален методом негативной селекции антителами.
– Другой способ избежать введения чужеродного генетического материала в геном перепрограммируемых клеток состоит в использовании микро-РНК (микро-РНК-трансфекция). Микро-РНК представляют собой один из ключевых регуляторов экспрессии генов при установлении и поддержании уникальных клеточных типов. Было определено, что несколько классов микро-РНК высоко специфично экспрессируются в ЭСК и регулируются основными факторами транскрипции Oct4, Sox2 и Klf4.
– Современные альтернативные методы:
Искусственные хромосомы; использование рекомбинантных репрограммирующих белков; использование смесей («коктейлей») низкомолекулярных соединений для получения ИПСК; антитела, которые связываются с белками на поверхности зрелых клеток.
Преимущества ИПСК
Нет этических ограничений; имеют нормальный кариотип и экспрессируют маркерные гены плюрипотентности — как и ЭСК; в перспективе могут быть получены рутинными методами из клеток любого пациента, что снижает проблемы иммунологической гистосовместимости; огромный потенциал в науке и медицине нового времени
Недостатки ИПСК
Длительное образование; низкий выход ИСПК, получаемый из первичных культур клеток (~1 %); нет 100 % идентичности с ЭСК; не до конца изучены; недостаточность долговременных испытаний; репрограммирование может быть неполным или вызывать мутации; ИПСК могут дифференцироваться не во все типы клеток; не все ИПСК являются хорошими моделями для изучения болезней
Перспективы ИПСК:
Понимание опухолевого процесса; лечение аутоиммунных заболеваний; трансплантация органов; изучение дегенеративных заболеваний ЦНС; развитие медицины регенерации; ИПСК клетки способны уничтожить раковую опухоль.
Литература:
- http://sibmed.net/article/612/snmzh_4–2018_korel__i_dr.pdf
- https://thepresentation.ru/medetsina/stvolovye-kletki-6
- https://vk.com/@geneticengineering-faktory-yamanaka