Язык программирования Python — это высокоуровневый и интерпретируемый язык программирования, который был создан Гвидо Ван Россумом в 1989 году и выпущен в 1991 году, которые « автоматизируют скучные вещи» (как выразилась одна популярная книга по изучению Python).
За последние несколько лет Python стал первоклассным языком в области разработки современного программного обеспечения, управления инфраструктурой, анализа данных и машинного обучения. Его используют в создании веб-приложений и управлении системами. Синтаксис Python разработан таким образом, чтобы он был читабельным и простым. Эта простота делает Python идеальным языком для обучения и позволяет новичкам быстро освоить его. В результате разработчики тратят больше времени на размышления о проблеме, которую они пытаются решить, и меньше времени на размышления о сложности языка или расшифровку кода, составленного другими. [2]
Ключевые слова: Python, библиотеки Python, синтаксис языка, Фреймворк, машинное обучение, анализ данных.
Python популярен и широко используется, о чем свидетельствуют высокие рейтинги в таких опросах, как индекс Tiobe и большое количество проектов GitHub, использующих Python. Python работает на всех основных операционных системах и платформах, а также на большинстве второстепенных. Многие основные библиотеки и API-сервисы имеют привязки Python или оболочки, позволяющие Python свободно взаимодействовать с этими сервисами или напрямую использовать эти библиотеки. [1]
Python может использоваться в различных отраслях промышленности. В 2014 году такие компании, как Nokia, IBM, Google и Disney, искали программистов с опытом работы на Python, чтобы помочь им в разработке веб-приложений и фреймворков; в этом отношении Python прекрасно сочетается с Django, который функционирует как базовая фреймворковая система, на которой строится Python. Python также позволяет программам создавать сценарии профессиональных веб-продуктов. От бэкэнда до фронтэнда разработки, полного стека и веб — опций. [5]
Библиотеки Python
Являясь одним из ведущих языков программирования, Python имеет много фреймворков (платформ для построения приложений) и библиотек, которыми можно воспользоваться. Библиотека языка программирования — это просто набор модулей и функций, которые облегчают некоторые специфические операции с использованием этого языка программирования. [4]
Итак, вот 7 основных библиотек для программирования на Python:
TensorFlow
Эта библиотека была разработана компанией Google в сотрудничестве с командой Brain Team. TensorFlow входит почти в каждое приложение Google для машинного обучения.
TensorFlow работает как вычислительная библиотека для написания новых алгоритмов, которые включают в себя большое количество тензорных операций, так как нейронные сети могут быть легко выражены в виде вычислительных графиков они могут быть реализованы с помощью TensorFlow в виде серии операций на тензорах. Тензоры — это N-мерные матрицы, представляющие ваши данные. [6]
Scikit-learn.
Это библиотека Python, связанная с NumPy и SciPy. Она считается одной из лучших библиотек для работы со сложными данными.
В этой библиотеке происходит много изменений. Одной из модификаций является функция перекрестной проверки, предоставляющая возможность использовать более одной метрики. Многие методы обучения, такие как логистическая регрессия, получили некоторые небольшие улучшения. [3]
Numpy
Numpy считается одной из самых популярных библиотек машинного обучения в Python.
TensorFlow и другие библиотеки используют Numpy для выполнения нескольких операций с тензорами. Интерфейс массива — это лучшая и самая важная особенность Numpy.
Keras
Keras — открытая нейросетевая библиотека, написанная на языке Python. Нацелена на оперативную работу с сетями глубокого обучения, при этом спроектирована так, чтобы быть компактной, модульной и расширяемой.
В дополнение к предоставлению более простого механизма для выражения нейронных сетей, Keras также предлагает некоторые из лучших функций для компиляции моделей, обработки наборов данных и визуализации графиков. На бэкэнде (сервере) Keras использует либо Theano, либо TensorFlow.
В связи с тем, что Keras создает вычислительный граф с помощью серверной инфраструктуры, а затем использует его для выполнения операций, он работает медленнее, чем другие библиотеки машинного обучения. Тем не менее, все модели в Keras являются портативными. [6]
PyTorch.
PyTorch — это крупнейшая библиотека машинного обучения, которая позволяет разработчикам выполнять тензорные вычисления с помощью ускорения графического процессора, создавать динамические вычислительные графики и автоматически вычислять градиенты. Кроме того, PyTorch предлагает богатые API для решения прикладных задач, связанных с нейронными сетями.
Эта библиотека машинного обучения основана на Torch, которая представляет собой машинную библиотеку с открытым исходным кодом, реализованную на языке Си с оболочкой в Lua.
Эта машинная библиотека на Python была представлена в 2017 году, и с момента своего создания библиотека набирает популярность и привлекает все большее число разработчиков машинного обучения. [5]
LightGBM
Gradient Boosting — это одна из лучших и наиболее популярных библиотек машинного обучения, которая помогает разработчикам создавать новые алгоритмы с использованием переопределенных элементарных моделей, а именно деревьев решений. Поэтому существуют специальные библиотеки, которые доступны для быстрой и эффективной реализации этого метода.
Эти библиотеки — LightGBM, XGBoost и CatBoost. Все эти библиотеки являются конкурентами, которые помогают в решении общей проблемы и могут быть использованы почти аналогичным образом.
SciPy
SciPy — это библиотека машинного обучения для разработчиков приложений и инженеров. Однако все равно нужно знать разницу между библиотекой SciPy и стеком SciPy. Библиотека SciPy содержит модули для оптимизации, линейной алгебры, интеграции и статистики.
Главная особенность библиотеки SciPy заключается в том, что она разрабатывается с использованием NumPy, и ее массив максимально использует NumPy. [3]
Кроме того, SciPy предоставляет все эффективные численные процедуры, такие как оптимизация, численное интегрирование и многие другие, используя свои специфические подмодули.
Все функции во всех подмодулях SciPy хорошо документированы.
Литература:
- Бизли, Дэвид М. Python. Подробный справочник, 4-е издание. — Перевод с английского. — СПб.: Символ-Плюс, 2010.
- Бизли, Дэвид М. Язык программирования Python. Справочник. — К.: ДиаСофт, 2010.
- Лейнингем ван Иван. Освой самостоятельно Python за 24 часа— М.: Вильямс.
- Лутц, Марк. Программирование на Python: — СПб.: Символ-Плюс, 2015
- Саммерфилд, Марк. Программирование на Python 3. Подробное руководство. — СПб.: Символ-Плюс, 2017.
- Электронный ресурс: https://habr.com/.