Предложен метод расчета будущего спроса на продукцию косметического сектора. На основании предложенного метода противопоставлены готовые решения по прогнозированию спроса. Также предложена программная реализация данного метода.
Ключевые слова: спрос, косметика, закупки, математическая модель, прогнозирование.
Исследование проводилось для компании «Профи Косметик», модель расчета будущего спроса разрабатывалась с учетом требований и особенностей работы компании.
Компания закупает косметическую продукцию у производителей и продает ее салонам, розничным магазинам и конечным потребителям. Была поставлена задача разработать автоматизированную систему для анализа будущего спроса на продукцию и разработки рекомендаций для закупок товаров. Цель разработки — повысить эффективность работы сотрудников торговой компании за счет автоматизации процесса составления плана закупок продукции в разных филиалах.
Главный показатель эффективности — трудозатраты сотрудников отдела продаж, выражаемые в часах [1]. Схема процесса представлена на рисунке 1:
Рис. 1. Схема процесса составления плана закупок до автоматизации
В исходном процессе есть 5 подпроцессов:
- сбор информации о покупках клиентов (в среднем 6 часов);
- выявление тенденций спроса (в среднем 3 часа);
- предсказание уровня спроса товаров на следующий период (в среднем 4 часа);
- поиск наиболее рентабельных товаров (в среднем 2 часа);
- составление плана закупок на следующий период (в среднем 3 часа);
Суммарно получаем 18 часов для выполнения процесса. Параллельно выполняются только 1 и 2 подпроцессы, для остальных нужны результаты предыдущих.
В исследуемом процессе действия 1–4 можно автоматизировать. Сотруднику останется только задать начальные параметры (1–2 минуты), получить рекомендации от системы и на их основе составить план закупок (3 часа). Так как система работает без участия человека, время выполнения анализа не учитывается в трудозатратах [2].
В итоге длительность процесса сократилась с 18 часов до 3. Внедрение системы позволит повысить эффективность работы сотрудников на 83 %. Схема процесса после автоматизации представлена на рисунке 2:
Рис. 2. Схема процесса составления плана закупок после автоматизации
Были составлены требования к системе, с учетом особенностей работы компании:
- система должна учитывать историю продаж компании (заказы клиентов в прошлые периоды);
- система должна учитывать сезонные тенденции изменения спроса на товары;
- система должна использовать метод «Хольта-Уинтерса» или авторегрессии, которые позволяют не только строить тенденцию спроса, но и учитывать сезонное влияние на спрос;
- система должна составлять рекомендации закупок как отдельных товаров, так и групп аналогичных товаров;
- рекомендации должны быть ранжированы по рентабельности товаров;
- система должна учитывать ограниченную сумму закупочных средств компании;
- система должна учитывать остатки товаров на складе;
- система должна работать с системой «1С:Предприятие» или с форматами выгрузки из этой системы;
- стоимость внедрения не должна превышать 300 000 рублей (компания относится к малому бизнесу и не сможет позволить себе дорогое решение); [3].
Далее был проведен обзор существующих на рынке систем анализа и прогнозирования спроса.
На рынке присутствует множество решений для анализа и прогнозирования спроса для коммерческих предприятий. Однако стоимость внедрения большинства из них превышает 500 тысяч рублей, что не подходит по требованию к стоимости. Удалось найти только одно решение «Novo Forecast PRO», стоимость внедрения которого составляет 100 тысяч рублей, но у него отсутствуют такие необходимые требования как учет остатков на складе и работа с форматами системы «1С:Предпричтие». Фактически данное решение является надстройкой для «Microsoft Excel» и имеет крайне ограниченный функционал. Подробное сравнение готовых решений представлено в таблице 1.
Таблица 1
Информация о жидкостях для снятия лака
Название системы |
Учет истории продаж |
Учет сезонного влияния |
Работа с товарами и группами товаров |
Учет остатков на складе |
Работа с «1С:Предпр». |
Стоимость внедрения |
1С:ERP |
+ |
+ |
+ |
+ |
+ |
>500 т. р. |
Forecast NOW! |
+ |
+ |
+ |
+ |
+ |
>1 млн. р. |
JDA Demand |
+ |
+ |
+ |
+ |
– |
>1 млн. р. |
Novo Forecast PRO |
+ |
+ |
+ |
– |
– |
100 т.р. |
GoodsForecast |
+ |
+ |
– |
+ |
– |
>500 т. р. |
Так как готового решения не нашлось, было принято решение разработать систему, подходящую под требования, своими силами. Так как проводить анализ и прогнозирование спроса необходимо не чаще одного раза в месяц, было принято решение использовать в качестве источника данных выгрузку истории продаж компании в формате «xls» файла из системы «1С:Предприятие», установленной на сервере в офисе компании. Анализ и прогноз необходимо представить также в формате «xls» файла для дальнейшей удобной работы сотрудника с ним. Разработка велась на языке программирования PHP, готовая система будет установлена на сервер компании.
Анализ и прогноз спроса проводится методами «Тренд + сезонность», «Скользящая средняя + сезонность» и «Хольта-Уинтерса» для каждого товара, результаты сравниваются и выбирается лучший. Значения, предсказанные лучшим методом, попадают в итоговый файл. Выбор лучшего метода необходим из-за того, что для разных товаров и групп товаров могут лучше подходить разные методы прогнозирования. Например, для прогнозирования больших групп товаров лучше подходит метод «Хольта-Уинтерса». А для отдельного товара, который не особо пользуется популярностью, лучше подходит трендовая модель.
Для растущего спроса прибыли компании может не хватать для полного удовлетворения спроса. Поэтому следующий этап работы системы — распределение закупочных средств компании на товары. Для поддержания полного ассортимента продукции держать на складе нужно все товары, однако товары с наибольшей разницей между ценой закупки и ценой продажи следует закупать в объеме, полностью удовлетворяющем спрос. На этом этапе нужна вторая выгрузка из системы «1С:Предприятие», в которой указаны цены закупки и продажи, а также остатки товаров на складе.
Для тестов была выбрана история продаж товаров бренда «Nexxt». На рисунке 3 представлен график истории продаж группы всех товаров выбранного бренда, а также прогнозные значения, рассчитанные исследуемыми методами. Минимальная ошибка у метода «Хольта-Уинтерса», именно этот метод будет использоваться для прогнозов этой группы товаров.
Рис. 3. График истории продаж всех товаров бренда и прогнозных значений методов
На рисунке 4 представлен график истории продаж товара «Шампунь серебристый 250 мл», а также прогнозные значения, рассчитанные исследуемыми методами. Минимальная ошибка у метода «Скользящая средняя + сезонность», это даже видно на графике невооруженным глазом.
Рис. 4. График истории продаж товара «Шампунь серебристый 250 мл» и прогнозных значений методов
Также были исследованы разделения товаров по группам. Это нужно для отслеживания тенденций и примерного предсказания спроса на новый товар в ассортименте компании. Для определения количества продаж за месяц в группе складываются продажи за месяц всех товаров, входящих в эту группу
Обычно товары группируют по сериям, к которым они принадлежат, например, «Зимняя серия» или «Серия ежедневного ухода», либо по назначению, например, «Оксидативные средства» или «Средства для обесцвечивания волос». Такое распределение не подойдет для прогноза, так как в такие группы входят совершенно разные товары. Это и смесь дорогих, дешевых товаров, разного объема и разной популярности. Из-за этого история продаж получается достаточно хаотичной и непредсказуемой. Пример графика истории продаж группы «Оксидативные средства» с наилучшим прогнозом представлен на рисунке 5. На графике видно, что явной тенденции нет, а также, что прогноз сильно отличается от реальных данных.
Рис. 5. График истории продаж группы «Оксидативные средства» с наилучшим прогнозом
Правильная группировка товаров происходит по типу и ценовому сегменту, например «Дешевые шампуни 250 мл», в которую попадут все шампуни данного бренда с объемом 250 мл и стоимостью до 200 руб. Такая группа позволяет увидеть спрос на дешевые шампуни, в большинстве случаев изменение спроса у таких товаров пропорционально друг другу. Также к правильной группе относятся все оттенки одной и той же краски для волос. На рисунке 6 представлен график истории продаж группы «Дешевые шампуни 250 мл» с наилучшим прогнозом. Видно, что для данной группы прогноз строится намного лучше, чем для предыдущей.
Рис. 6. График истории продаж группы «Дешевые шампуни 250 мл» с наилучшим прогнозом
На всех графиках выше отчетливо видно снижение продаж каждый январь. Все методы учитывают коэффициент сезонности, поэтому в прогнозных значениях не только совпадают снижения продаж в январе, но и учитываются другие, неочевидные тенденции, за счет этого прогноз получается достаточно точным.
Литература:
- Карасев А. П. Маркетинговые исследования и ситуационный анализ. — 2 изд. — М.: Юрайт, 2017. — 315 с.
- Кочкина Е. М., Радковская Е. В. Математические методы и модели в экономике. — Raleigh: Open Science Publishing, 2017. — 173 с.
- Горбунов В. К. Потребительский спрос. Аналитическая теория и приложения. — Ульяновск: Ульяновский государственный университет, 2015. — 264 с.
- Анализ спроса рынка // TK Solutions URL: http://tk-solutions.ru/article/analiz_sprosa_rynka (дата обращения: 01.05.2021).
- Математическое моделирование спроса и предложения // Bstudy URL: https://bstudy.net/712570/ekonomika/matematicheskoe_modelirovanie_sprosa_predlozheniya (дата обращения: 01.05.2021).