Данная статья посвящена изучению нано- и микроразмерных систем направленного транспорта биологически активных веществ и лекарственных препаратов различных групп в клетки-мишени.
Ключевые слова : биологически активные вещества, лекарственные препараты, направленный транспорт, микрокапсулы, микроконтейнеры.
Одним из актуальных направлений развития биотехнологии на сегодняшний момент является создание систем, позволяющих доставлять лекарственные препараты непосредственно к клеткам-мишеням. Для целенаправленного влияния вводимого в организм вещества необходимо исключить его попадание в другие органы и ткани, где препарат может оказывать негативный эффект, в том числе и при его большой дозировке [4].
В качестве доставщика действующего вещества в настоящий момент возможно использование полимерной матрицы, представляющую собой нано- и микроконтейнер. Применение такого рода систем инкапсулирования позволит увеличить стойкость лекарственных препаратов к воздействию внутренней среды организма, а также продлить время действия самого вещества, не повышая дозировку выше терапевтической [1].
Предполагается, что влияние инфракрасного излучения ближнего диапазона положительно сказывается на чувствительности оболочек микрокапсул.
В настоящей работе рассматриваются результаты исследований особенностей транспорта биологически активных веществ при использовании полимерных систем инкапсулирования.
Материал и методы
Традиционные методы включения в микрообъекты фиксированного размера и формы (сферы, капсулы) основываются на физико-химических процессах преципитации, полимеризации, коацервации и т. д. Эти методы предполагают использование органических растворителей, поперечно-сшивающих агентов, что может снизить активность вещества, включаемого в микроконтейнеры.
Биополимерные микрокапсулы могут быть получены методом послойного осаждения (рис. 1). Этот процесс включает несколько стадий: синтез ядра-матрицы, формирование мультислойного покрытия на нем и растворение ядра-матрицы [3]. Данный метод носит название «слой за слоем» (layer-by-layer) и позволяет получать ультратонкие пленки толщиной от 1 до 1000 нм с точностью до одного адсорбированного слоя.
Рис. 1. Схема образования многослойной пленки ПЭ последовательной адсорбцией полианиона и поликатиона. Этапы 1 и 3 — адсорбция полианиона и поликатиона, 2 и 4 — этапы отмывки несвязавшегося ПЭ
Как видно из рисунка 1, отрицательно заряженные коллоидные частицы, выступающие в качестве ядра, инкубируются в растворе положительно заряженного полиэлектролита, после чего его молекулы адсорбируются на поверхности частицы. Несвязавшиеся молекулы полиэлектролита удаляют и затем наносят полиэлектролит противоположного заряда. Многократное повторение процедур нанесения полиэлектролитов приводит к формированию «многослойной» полиэлектролитной пленки на поверхности коллоидной частицы.
Результаты и обсуждение
К настоящему моменту синтезирован широкий спектр различных носителей, охватывающих как нано-, так и микро размер, к самым популярным и эффективным можно отнести липосомы, полимерные мицеллы, полимерные частицы и полиэлектролитные микрокапсул. Среди упомянутых систем доставки стоит выделить полиэлектролитные нано- и микрокапсулы (ПЭМК), получаемые методом поочередной адсорбции противоположно заряженных полиэлектролитов на поверхности коллоидных частиц, с последующим их растворением. Он быстро привлек внимание огромного числа исследовательских групп, что связано с его простотой, отсутствием специальных требований к используемому оборудованию и возможностью создавать заданные молекулярные системы на поверхностях различной формы и широким спектром физико-химических свойств. Важной особенностью метода является возможность функционализации оболочки различными заряженными молекулами, например, такими как, белки, ДНК, флуоресцентные зонды и наночастицы.
Лазерное излучение имеет глубину проникновения на уровне менее 1 см, даже в области терапевтического окна, находящегося в диапазоне 650–900 нм. Исходя из этого предполагается, что данный метод будет иметь ограниченное применение для транспортных систем [5].
Если капсула состоит преимущественно из композитных материалов в присутствии диоксида титана, то в целях повышения чувствительности капсулы целесообразно применять излучение ближнего ИК-диапазона (0,7–1 мкм), так как он является менее опасным для живых тканей по сравнению с ультрафиолетом. Чувствительность оболочки микрокапсулы к ИК-излучению обычно обеспечивается присутствием в ее составе красителей или наночастиц благородных металлов, таких как серебро или сульфид золота [2].
Следует отметить, что основной проблемой остается переход от стадий разработки и синтеза наносистем доставки к стадии массового применения готового препарата на базе этих систем [6]. Исследователи отмечают ряд негативных факторов, например, высокую стоимость разработки и выпуска таких систем, а также сложность испытаний.
Таким образом, было установлено:
1) разработка методов инкапсулирования веществ в полимерную матрицу может оказать значительное влияние на получение лекарственных препаратов пролонгированного действия, а также защитить действующее вещество от окисления и увеличить его биодоступность;
2) действие ближнего диапазона ИК-излучения на чувствительность капсулы — достаточно успешно развивающееся направление в биотехнологии, так как по сравнению с другими видами излучения ИК-спектр оказывает менее пагубное влияние на ткани и клетки организма.
Литература:
- Агабеков, В. Е. Нано- и микроконтейнеры для доставки биологически активных веществ / В. Е. Агабеков, В. Куликовская, К. С. Гилевская // Наука и инновации. — № 4 (170). — 2017. — С. 16–19.
- Гейнц, Ю. Э. Оптимизация поглощения оптического излучения многослойными сферическими микрочастицами / Ю. Э. Гейнц, Е. К. Панина, А. А. Землянов // Оптика атмосферы и океана. — Т. 30. — № 2. — 2017. — С. 139–145.
- Гилевская, К. С. Синтез пористых сферических микрочастиц карбоната кальция в присутствии биополимеров / К. С. Гилевская, Т. Г. Шутова, В. Е. Агабеков // Материалы. Технологии. Инструмент. — 2011. — С. 82–85.
- Ивонин, А. Г. Направленный транспорт лекарственных препаратов: современное состояние вопроса и перспективы / А. Г. Ивонин, Е. В. Пименов, В. А. Оборин [и др.] // Известия Коми научного центра УРО РАН. — Выпуск 1(9). — 2012. — С. 46–55.
- Петров, А. В. Акустоэлектронная система формирования высокоинтенсивного сфокусированного ультразвукового излучения для вскрытия нано- и микроразмерных контейнеров / А. В. Петров, В. В. Петров, С. А. Лапин [и др.] // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. — Т. 18. — Вып. 3. — 2018. — С. 215–227.
- Попова, Е. В. Современные тенденции в разработке и производстве наноразмерных систем для доставки лекарственных соединений / Попова Е. В. П. П. Бельтюков, А. С. Радилов // Научно-технический вестник информационных технологий, механики и оптики. — Т. 20. — № 2. — 2020. — С. 206–222.