В статье представлены результаты исследований использования промышленных отходов в качестве сырьевых материалов в производстве керамических изделий одновременным решением некоторых экологических задач .
Ключевые слова : окружающая среда, экологическая система, промышленные отходы, химическая промышленность, утилизация отходов.
Главным направлением защиты природной среды сегодня является максимально возможное поддержание экологического равновесия и обеспечение естественных взаимосвязей экосистемы. Взаимное воздействие промышленности и окружающей среды выступает как бы составным элементом экологической системы «человек — природа». С развитием промышленности требование на природных сырьевых материалов увеличивается и ставится вопросы рационального использования всех видов ресурсов, а также утилизации отходов промышленности.
Промышленными отходами называются остатки и неиспользуемые побочные продукты, возникающие во время производственного процесса. В последние время в керамической промышленности большое внимание уделяется вовлечению в производства недефицитного производственного сырья и разнообразных отходов промышленности [1].
Современные технологии вторичной переработки позволяют получать широкий спектр полезных материалов. Исследованиями многих ученых по вопросам использования различных техногенных отходов установлена возможность их применения в керамической промышленности. В отличие от многих других производственных отраслей, керамическая промышленность способна повторно использовать внутри своего производства основную часть собственных отходов, которые образуются в определенной стадии (часто как отошители) производства. Таким образом удается избежать добычи, транспортировки и использования тысяч тонн материалов природного происхождения, таких как песок, полевые шпаты, оксид алюминия, оксид циркония, муллит, глины.
Широкое применение находят шлаки доменные, сталеплавильные, цветной металлургии, химической промышленности, а также топливные. Перечень отходов химической промышленности и производства минеральных удобрений достаточно обширен. Это фосфогипс, и сульфогипс, дистиллярная жидкость и другие отходы. Шлаки цветной металлургии получают при восстановительной плавке никеля, меди, свинца, цинка и некоторых других металлов из сульфидных руд этих металлов. Эти шлаки содержат 15–48 % FeO с примесью Fe 2 O 3, а так же в их состав входят до 10,5 % MgO, 17 % Al 2 O 3 и 23 % CaO. Шлаки химической промышленности образуются при переработке фосфатов и аппатитов на фосфор при температуре 1450–1550 0 С и подвергаются грануляции. В их составе общее содержание CaO и SiO 2 достигает до 90 %. Топливные шлаки по химическому составу состоят из оксидов кремния, алюминия, железа, кальция и магния [2].
Выпускаемые в настоящее время керамических плитки с использованием дорогостоящих оксидных глушителей, хотя и обладают достаточной термической и химической устойчивостью, за счет использования, импортируемых из других стран дорогостоящих и дефицитных ингредиентов, характеризуются высокой себестоимостью.
Следовательно, разработка керамических плит с улучшенными физико-химическими и техническими свойствами на основе доступных местных компонентов решает важнейшую проблему повышения качества и снижения себестоимости керамических изделий. В этом аспекте, решение проблемы получения керамических изделий и глушенных глазурей с комплексным использованием флотоотходов вольфрам-молибденообогатительных фабрик в композиции с традиционно применяемыми сырьевыми материалами (тальк, мел, полевой шпат, доломит, песок), способствующих быстрому образованию устойчивых тонкодисперсных кристаллических соединений в виде волластонита, диопсида, анортита, гематита. Эти кристаллы придают упругость, физико-химическую устойчивость керамическим изделиям. Они образуются из соответствующих оксидов, которые можно рассмотреть по химическому составу сырья. Многие отходы производства содержат в большом количестве SiO 2 , Fe 2 О 3 , Al 2 О 3 , оксиды щелочных и щелочеземельных металлов и другие [4].
Нами было изучено состав кайташских флотоотходов: Кайташские флотоотходы представляют собой тонкодисперсное сыпучее вещество темно-серого цвета с пластичностью — 6,7, 10 % соляная кислота реагирует с пробой, что указывает на присутствие в ней карбонатов, что подтверждается нижеприведенными данными по определению его минералогического состава. Число пластичности отхода позволяет можно классифицировать его как малопластичное сырье. Огнеупорность 1130–1160 0 С. Это показывает, что данные хвосты относятся к группе легкоплавких. Химический состав изученных проб флотоотхода приведен в табл. 1.
Таблица 1
Химический состав кайташского флотоотхода, масс. %
Пробы |
SiO 2 |
Al 2 О 3 |
Fe 2 О 3 |
СаО |
MgО |
TiО 2 |
Na 2 О |
К 2 О |
S |
n.n.n. |
1 |
41,7 |
9,01 |
13,8 |
19,0 |
4,7 |
0,45 |
0,48 |
0,26 |
0,1 |
10,59 |
2 |
42,0 |
8,89 |
14,2 |
18,9 |
4,6 |
0,40 |
0,56 |
0,16 |
0,1 |
10,27 |
3 |
43,1 |
8,56 |
13,42 |
19,24 |
3,9 |
0,49 |
0,44 |
0,28 |
0,01 |
10,56 |
4 |
42,8 |
9,23 |
14,5 |
18,9 |
4,8 |
0,36 |
0,32 |
0,14 |
0,01 |
8,94 |
Из таблицы видно, что пробы по химическому составу содержат 41,7–43,1 % SiO 2 и 13,42–14,2 % Fe 2 О 3 . Высокое содержание кварца в составе «хвостов» при их использовании позволяет вводить в состав керамических масс кварцевых компонентов в малых количествах Характерным для указанных проб «хвоста» является высокое содержание красящего оксида — Fe 2 О 3 [95].
Флотоотход имеет тонко дисперсную фракцию, поэтому при его применении из технологического цикла исключается стадия грубого помола сырья, что заметно сокращает время и затраты на измельчение и помол в производственных условиях, т. е. упрощает технологию изготовления керамической массы по сравнению с существующей.
Основными минералами флототхода являются — каолинит (21,77 %), волластонит (36,4 %), гидрослюда (3,68 %), гематит (15,8 %) остальное — SiO 2 , что подтверждается также рентгенофазным и термографическим анализами. Эндотермический эффект при 173 0 С на термических кривых характеризует удаление гигроскопической воды (рис. 1).
Рис. 1. ДТА исходного флотоотхода кайташской вольфрам-молибденовой фабрики
Экзотермический эффект при 430 ° С соответствует выгоранию органических примесей. Эндотермический эффект при 580 ° С вызван удалением кристаллизационной воды и частичным разрушенем кристаллической решетки каолинита, а эндотермический эффект при 846 ° С — полиморфными превращениями кварца. Эндотермический эффект с максимумом при 980 ° С сопровождается появлением новых фаз — муллита, анортита. Дифрактограмма флотоотхода обнаруживает следующие фазы: кварца d/n = 0,421; 0,3350,180 нм; каолинита 0,511; 0,197 нм; волластонита d/n = 0,317; 0,287; 0,197; 0,148 нм, гидрослюда d/n = 0,511; 0,335; гематита d/n = 0,269; 0,251; 0,227; 0,186 нм.
По результатам определения химико-минералогического состава и процессов фазовых изменений при термической обработке применяемых сырьевых материалов составлены и изучены композиции «каолин-глиеж-КВМР» с целью разработки керамических масс для облицовочных плит, обладающих достаточно улучшенными технологическими и физико–техническими свойствами. Это позволит решить проблему экономии дорогостоящих, дефицитных оксидных и природных сырьевых материалов, снижение затрат энергетических ресурсов и себестоимости керамических изделий.
Как показали исследования, твердые побочные продукты и отходы производства в составах керамических масс в зависимости от свойств глинистого компонента могут выполнять следующие основные функции:
— отощающие — улучшающие усадочные сушильные свойства;
— интенсифицирующие процессы спекания итвердофазные реакции;
— как компонент, способствующий повыщению прочности и термостойкости материала;
— позирующие — для снижения объемной плотности изделий;
— в качестве окрашивающих материалов при производстве цветных облицовочных плит и плиток для полов.
Это дает возможность заменить не только традиционные сырьевые материалы более дешевыми и доступными видами сырья, и отходами производства, но и решить проблемы охраны окружающей среды.
Литература:
- У. Б. Александрович и др., Экология и производство строительных материалов. Системные технологии, журнал- 2015 -№ 1/22 С.84–88.
- Иркаходжаева А. П., Азимов И., Таирова М. Х.. Исследование влияния окиси магния на кристаллообразовательные процессы фаянсовых титановых глушенных глазурей // Узб. Хим. Журнал. 1972. — № 1.– С.16–18.
- Икрамова З. О., Мухамеджанова М. Т. Разработка оптимальных составов керамических масс и их физико-химические свойства // Узб. Хим. Ж. 2010. — № 5. — С.25- 29.
- Сулименко Л. И., Тихомирова И. Н. Основы тугоплавких неметаллических силикатных материалов. — М.: РХТУ им. Менделеева Д. И. 2000. — 136 с.