Чтобы правильно и рационально решать задачи, связанные с уравнением касательной, нужно четко понимать, что такое касательная, владеть техникой составления уравнения касательной к графику функции и представлять себе, для решения каких задач (в том числе и задач с параметрами) можно использовать метод касательной.
Опр. 1. Касательной к графику функции у = f(x) называется предельное положение секущей MN при (рис. 1).
Рис. 1
Касательная к кривой может иметь с ней несколько общих точек или пересекать ее. Можно дать и другое определение касательной к кривой.
Опр. 2. Касательной к графику функции у = f(x) в точке A0(x0; f(x0)) называется прямая, проходящая через точку A0, угловой коэффициент которой равен значению производной функции у =f(x) в точке с абсциссой x0.
Уравнение касательной к кривой у = f(x) в точке с абсциссой х0 имеет вид: .
Между понятием касательной и понятие производной имеется тесная связь. Геометрический смысл производной можно выразить так: если функция у = f(x) в точке х0 имеет производную, то в точке с этой абсциссой определена касательная к графику функции , причем ее угловой коэффициент равен . Вывод: если в точке х0 есть производная функции , то в точке с этой абсциссой есть касательная к графику функции и наоборот; если в точке х0 нет производной функции , то в точке с этой абсциссой нет касательной к графику функции и наоборот.
Укажем
случаи, когда
функция не имеет в точке касательной, и, следовательно, не
имеет и производной. Таких случаев три: угловая точка, точка
возврата, узловая точка
(рис. 2 а, б, в). Особо
отметим случай, когда в точке функция имеет бесконечную
производную (рис. 2 г).
угловая точка точка возврата узловая точка
а) б) в) г)
Рис. 2
Рассмотрим решение некоторых задач.
Задачи, связанные с определением того, является ли прямая у = kx + b касательной к графику функции у = f(x). Можно указать два способа решения таких задач.
Находим общие точки графиков, т. е. решаем уравнение f(x) = kx + b, а затем для каждого из его решений вычисляем . В тех случаях, когда = k, имеет место касание, в других — пересечение.
Находим корни уравнения = k и для каждого из них проверяем, выполняется ли равенство f(x) = kx + b. При его выполнении получаем абсциссы точек касания.
Обобщая оба способа, заметим, что для того чтобы прямая у = kx + b была касательной к графику функции у = f(x), необходимо и достаточно существование хотя бы одного числа х0, для которого выполняется система
Решение. Записав условие касания получим
Указание.
Ответ: а = e-3
Указание.
Ответ: а = 7 или а = -1.
Является ли прямая касательной к графику функции ? Если является, то найти координаты точки касания.
Решение. Пусть . Из условия следует, что должны выполняться равенство , где - возможная абсцисса точки касания. Имеем:
Если теперь составить уравнение касательной к графику заданной функции в каждой из двух найденных точек, то окажется, что в точке как раз и получится . Значит, точка касания имеет координаты (1;-1).
Решение. . Абсцисса интересующей нас точки касания удовлетворяет уравнению . Имеем:
Таким образом, . Значит, - абсцисса точки касания. Чтобы найти ординату точки касания преобразуем выражение, задающее функцию:
Ответ: 1.
Решение. Так как касательная должна быть параллельна прямой , то ее угловой коэффициент, равный у'(х0), где х0 — абсцисса точки касания, совпадает с угловым коэффициентом данной прямой, т. е. . Отсюда или . Далее составляем уравнение касательной для каждой точки.
Найти все значения , при каждом из которых касательная к графикам функций и в точках с абсциссой параллельны.
Решение. Известно, что тангенс угла наклона касательной к графику функций в точке с абсциссой равен . Следовательно, все искомые значения будут корнями уравнения , откуда . Используя формулу разности синусов углов, будем иметь . Решая полученное уравнение, получаем
Решение. Найдем критические точки заданной функции:
Так как, производная в точках и равна нулю, то касательные, проведенные к кривой в точках с этими абсциссами, параллельны оси . Найдем значения функций в этих точках.
Итак, расстояние d между касательными, параллельными оси , равно
С составлением уравнения касательной, параллельной данной прямой, связана задача о нахождении кратчайшего расстояния между графиком некоторой функции f(x) и прямой .
Во многих случаях удается найти касательную к графику , параллельную данной прямой и делящую плоскость на две части, в одной из которых расположен график функции, а в другой — заданная прямая. Тогда кратчайшим расстоянием между графиком функции и прямой является расстояние от точки М(х0; у0), в которой проведена параллельная касательная, до заданной прямой у = kx + b; это расстояние можно вычислить по формуле
Решение. Убедившись, что графики не имеют общих точек (уравнение не имеет решений), запишем уравнение такой касательной к графику функции , которая параллельна прямой Уравнение касательной имеет вид касание происходит в точке Прямая у = х – 2 и парабола у = х2 расположены по разные стороны от касательной. Таким образом, кратчайшее расстояние между параболой и прямой равно расстоянию от точки М до прямой .
Довольно сложной является задача составления уравнения всех касательных к графику функции у = f(x), проходящих через заданную точку М(х0; у0), вообще говоря, не лежащую на графике. Приведем алгоритм решения этой задачи.
1. Составляем уравнение касательной к графику функции у = f(x) в произвольной точке графика с абсциссой t:
2. Решаем относительно t уравнение и для каждого его решения t записываем соответствующую касательную в виде .
Указание.
Уравнение касательной в точке с абсциссой t
имеет вид
.
Так как эта
касательная проходит через точку
(2; -2), то
,
откуда
.
Найти площадь треугольника, образованного касательными, проведенными к графику функции через точку и секущей, проходящей через точки касания.
Указание. Уравнение дает два решения: t1 = 1, t2 = 4. Таким образом, точки K1 (1;1) и K2(4;2) являются точками касания.
Ответ: 0,25.
Говорят, что
прямая
является общей касательной графиков функции
и
,
если она касается как одного, так и другого
графиков (но совершенно не обязательно в одной и той же точке).
Например, прямая
является общей касательной графиков функций
(в точке М(2; 5) и
(в точке K(0,5;
-1)). Заметим, что графики функций
и
имеют в точке их пересечения М(х0;
у0)
общую невертикальную касательную тогда и
только тогда, когда
.
Доказать, что параболы и имеют в их общей точке общую касательную. Найти уравнение этой общей касательной. Решение. Уравнение имеет единственный корень х=2, т. е. параболы имеют единственную общую точку М(2;0). Убедимся, что значения производных для обеих функций в точке х = 2 равны; действительно, и . Далее составляем уравнение касательной.
В завершении рассмотрим решение еще нескольких задач на касательную с параметром.
Решение. Составим уравнение касательной к графику заданной функции в точке : Так как эта прямая проходит через точку (2;3), то имеет место равенство , откуда находим: .
Может ли касательная к кривой в какой-либо ее точке составлять острый угол с положительным направлением оси ?
Решение. Найдем производную функции . В любой точке, в которой функция определена, производная отрицательна. Но производная есть тангенс угла наклона касательной, а так как он отрицателен, то угол тупой.
Ответ: Не может.
Найти значение параметра , при котором касательная к графику функции в точке проходит через точку М(1;7).
Решение. Пусть тогда . Составим уравнение касательной:
По условию эта касательная проходит через точку М(1;7), значит, , откуда получаем:
Решение. Из условия следует, что должно выполнятся равенство где абсцисса точки касания. Значит, и связаны между собой равенством (1). Составим уравнение касательной к графику заданной функции в точке
Из условия следует, что должно выполняться равенство . Решив это уравнение, получим . Тогда из (1) получаем, что .
Решение. Так как прямая является касательной к графику функции , то в точке касания угловой коэффициент касательной равен 3. Но угловой коэффициент касательной равен значению производной функции в этой точке, то есть , откуда , следовательно, - абсцисса точки касания. Найдем теперь из условия равенства значений функций и при . Имеем , откуда .
При каких значениях параметра а касательные к графику функции , проведенные в точках его пересечения с осью оx, образуют между собой угол 60о?
Решение. В этой задаче, как и в предыдущих, речь идет о касательных к графику функции. Составлять уравнение касательной не надо, достаточно использовать геометрический смысл производной, то есть угловые коэффициенты касательных. Графиком данной функции является парабола с ветвями, направленными вверх, пересекающая ось оx в двух точках (случай а=0 нас не устраивает): и учитываем, что х2>0 (рис. 3)
Рис. 3
Касательные АМ и ВМ пересекаются под углом 60о в точке М, лежащей на оси параболы, причем возможны два случая: либо , либо смежный угол равен 60о. в первом случае угол между касательной АО и осью х равен 120о, следовательно, угол коэффициента касательной равен tg120o, то есть равен Далее имеем: . Таким образом, получаем, что , то . Во втором случае , поэтому угол между касательной АО и остью ох равен 150о. Значит, угловой коэффициент касательной равен tg150o , то есть он равен . Таким образом, получаем, что , то есть
Литература:
Далингер, В.А. Начала математического анализа в задачах [Текст]: учебное пособие / В.А. Далингер. – Омск: Изд-во ГОУ ОМГПУ, 2009. – 312 с.
Звавич, Л.И. Алгебра и начала анализа. 8-11 кл. [Текст]: пособие для школ и классов с углубл. изучением математики / Л. И. Звавич, Л.Я. Шляпочник, М.В. Чинкина.– М.: Дрофа, 1999. – 352 с.