О решении одной смешанной задачи для уравнения плотности акций | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 1 февраля, печатный экземпляр отправим 5 февраля.

Опубликовать статью в журнале

Библиографическое описание:

Аблабеков, Б. С. О решении одной смешанной задачи для уравнения плотности акций / Б. С. Аблабеков, А. К. Курманбаева, Р. Т. Ыкынов, Перизат Жунусова. — Текст : непосредственный // Молодой ученый. — 2022. — № 13 (408). — С. 1-5. — URL: https://moluch.ru/archive/408/89802/ (дата обращения: 18.01.2025).



Работа посвящена исследованию смешанной задачи для одного уравнения теплопроводности, описывающего плотность акции. Задача заключается в нахождении функции плотности акции в смешанной задаче на полуоси для вырождающегося уравнения теплопроводности. Получено явное решение рассматриваемой задачи.

Ключевые слова: смешанные задачи, параболическое уравнение, формула Пуассона.

The work is devoted to the study of a mixed problem for one heat conduction equation describing the stock density. The problem is to find the stock density function in the mixed problem on the semi axis for the degenerate heat equation. An explicit solution of the problem under consideration is obtained.

Keywords: mixed problems, parabolic equation, Poisson's formula.

Аналитическое моделирование основано на описании моделируемого объекта с помощью математических формул, которые выражаются через алгебраические, дифференциальные, а также интегральные уравнения и систем. При этом связывающие выходные и входные переменные модели, дополняются системой ограничений и целевой функцией. Причем, как правило, существует много способов получения аналитического (явного) решения уравнений.

Акция предприятия — ценная бумага (документ), означающая, что ее владелец является собственником доли предприятия, а стоимость акции означает стоимость этой доли. Таким образом, акция — это бумага специального назначения, которая имеет определенную рыночную стоимость. Естественно, в зависимости от экономической ситуации стоимость акции изменяется со временем. Акции продаются и покупаются на бирже и дают право получать дивиденды (доход) [1, с. 19].

Стоимостью обладают и другие объекты: любые виды товара на рынке, иностранная валюта, долговые бумаги, контракты. Все виды объектов, имеющих стоимость, покупающихся и продающихся на рынке в большом количестве, называются активом соответствующего вида. Актив — это или акции, или товар, или иностранная валюта, или банковские счета, или облигации, или контракты и т. д. [1, 2].

Для активов предпринимателями заключаются разного рода финансовые договоры, контракты, обязательства и они оформляются в виде документов (ценных бумаг), которые также обладают определенной стоимостью. Такие ценные бумаги называются финансовыми производными от исходного актива.

Этот процесс математически выражается следующим уравнением параболического типа и

.(1)

Уравнение (1.1) фактически является нелинейным уравнением и строгий вывод этого уравнения изложено в работе [4].

Мы упростим это уравнение.Введем обозначение . Тогда уравнение (1) приобретает вид

, , (2)

где

,

, . (3)

Уравнение (2) называется уравнением для плотности акций и является вырождающимся уравнением теплопроводности. Запишем это уравнение в дивергентном виде:

. (4)

Из этой формы записи можно получить закон сохранения числа акций на пространстве цен. Действительно, интегрируя уравнение (4) по в пределах от до , получаем

.

Следовательно, , то есть число акций на пространстве цен не зависит от времени .

2. Постановка задачи и основной результат

В областирассмотрим следующую задачу для параболического уравнения

в (5)

,

(6)

,(7)

где , , .

Задача (5)–(7)означает, что в начальный момент времени акции распределены на полуоси и известна функция плотности их распределения

. Требуется определить плотность акций из уравнения (5) в последующие моменты времени .

Уравнение (5) имеет две особенности, во-первых, уравнение является вырождающимся, во-вторых, имеется младшие члены, которые не позволяют непосредственно применить функцию Грина. Для этого введем новую неизвестную функцию , производя замену , тогда относительно функции получим задачу

,(8)

,

(9)

.(10)

Далее произведем замену независимых переменных , вводя новые переменные :

, , .

Вычислим производные

, , .

Подставляя найденные производные в уравнение (8) вместо задачи (8) -(10), получим задачу Коши для уравнения теплопроводности:

(11)

, ,(12)

где

, , .

Решение задачи (11), (12) можно выписать явно [3]:

.

Пусть , . Тогда получим

.

Теперь возвращаясь к старым переменным, получим решение исходной задачи (5) -(7):

. (13)

Пример 1. Рассмотрим пакет из акций, каждая из которых в момент времени стоила ден.единиц. Тогда начальная плотность акций в условии (12) может быть представлена в виде

,

где — дельта-функция Дирака, сосредоточенная в точке.

Так как Дельта функция Дирака является обобщенной функцией, то нам удобно использовать следующие свойства Дельта функции

.(14)

Подставляя в формулу (13) и используя (14), находим

. (15)

Функцию (15) при можно интерпретировать как плотность вероятностей, с которой будет распределена цена одной акции в момент времени при условии, что в начальный момент времени акция стоила

денежных единиц.

Литература:

  1. Медведев Г. А. Математические модели финансовых рисков. Минск: БГУ, 1999. Ч. 1.
  2. Математические и инструментальные методы в современных экономических исследованиях:Монография / Под редакцией М. В. Грачевой и Е. А. Тумановой.
  3. Тихонов А. Н. Самарский А. А. Уравнения математической физики. М.: Наука, 1972.- 735с.
  4. Ерофеенко В. Т., Козловская И. С. Уравнения с частными производными и математические модели в экономике: Курс лекций. МИНСК. 2004.-246с.
Основные термины (генерируются автоматически): уравнение, иностранная валюта, момент времени, начальный момент времени, параболическое уравнение, плотность акций, пространство цен, смешанная задача, стоимость акции, уравнение теплопроводности.


Ключевые слова

параболическое уравнение, смешанные задачи, формула Пуассона

Похожие статьи

Псевдопараболическая регуляризация одной граничной обратной задачи для уравнения теплопроводности

Работа посвящена исследованию одной граничной обратной задаче для уравнения теплопроводности, которое связана с изучением нестационарных тепловых процессов. Обратная задача заключается в нахождении граничной функции из первой начально-краевой задачи ...

Решение обратной задачи для параболического уравнения, возникающего при моделировании денежных накоплений семьи

Работа посвящена исследованию обратной задачи для одного параболического уравнения, возникающего при моделировании процесса денежного моделирования. Дополнительная информация для решения обратной задачи задается в некоторой точке. Доказательство суще...

О разрешимости обратной задачи определения функции источника для двумерного псевдопараболического уравнения

Работа посвящена исследованию одной линейной обратной задачи определения источника для двумерного псевдопараболического уравнения. Обратная задача заключается в нахождении функции источника, не зависящей от одной пространственных переменных из началь...

Асимптотика решения бисингулярной задачи на бесконечной прямой с квадратичной особенностью по времени

В работе построено асимптотическое разложение решения задачи Коши для бисингулярной параболического уравнения, в случае, когда решение соответствующего «вырожденного» уравнения имеет полюс второго порядка по времени в начальной точке. Асимптотика реш...

Интегральное уравнение для граничной задачи теплопроводности с дробной нагрузкой

В статье рассматривается краевая задача с дробно нагруженным уравнением теплопроводности в первом квадранте. Нагрузка имеет форму дробной производной Капуто, и порядок производной меньше порядка дифференциальной части. Обращением дифференциальной час...

К задаче об оптимальной стабилизации управляемых систем с конечным запаздыванием

В работе предложено решать задачу об оптимальной стабилизации для функционально-дифференциального уравнения на основе функционалов Ляпунова со знакопостоянной производной. Для этого используется метод предельных уравнений.

О разрешимости второй начально-краевой задачи для одномерного псевдопараболического уравнения с дробными производными

В одномерной ограниченной области исследована вторая начально-краевая задача для однородного псевдопараболического уравнения с дробной по времени производной Капуто. Установлены условия однозначной разрешимости рассматриваемой задачи в классе непреры...

Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка

В работе исследована обратная задача определения правой части для дифференциального уравнения с частными производными четвертого порядка с переопределениям во внутренних точках. Сначала с помощью функции Грина исходная прямая задача сводится к эквива...

Решение начальной задачи для линейных рекуррентных соотношений первого порядка в случае одношагового расщепления

Рассматривается начальная задача для неоднородного линейного рекуррентного соотношения первого порядка с операторными коэффициентами A,B, задаваемыми квадратными числовыми матрицами. Оператор A необратим, вследствие чего задача имеет решение не при к...

Задачи Дарбу и Коши для линейных гиперболических уравнений с постоянными коэффициентами

Многие явления механики, физики, биологии сводятся к исследованию гиперболических уравнений. Чтобы эти явления описать полностью для гиперболических уравнений, ставится задача Дарбу и для дальнейших изучений необходимо явное представление рассматрива...

Похожие статьи

Псевдопараболическая регуляризация одной граничной обратной задачи для уравнения теплопроводности

Работа посвящена исследованию одной граничной обратной задаче для уравнения теплопроводности, которое связана с изучением нестационарных тепловых процессов. Обратная задача заключается в нахождении граничной функции из первой начально-краевой задачи ...

Решение обратной задачи для параболического уравнения, возникающего при моделировании денежных накоплений семьи

Работа посвящена исследованию обратной задачи для одного параболического уравнения, возникающего при моделировании процесса денежного моделирования. Дополнительная информация для решения обратной задачи задается в некоторой точке. Доказательство суще...

О разрешимости обратной задачи определения функции источника для двумерного псевдопараболического уравнения

Работа посвящена исследованию одной линейной обратной задачи определения источника для двумерного псевдопараболического уравнения. Обратная задача заключается в нахождении функции источника, не зависящей от одной пространственных переменных из началь...

Асимптотика решения бисингулярной задачи на бесконечной прямой с квадратичной особенностью по времени

В работе построено асимптотическое разложение решения задачи Коши для бисингулярной параболического уравнения, в случае, когда решение соответствующего «вырожденного» уравнения имеет полюс второго порядка по времени в начальной точке. Асимптотика реш...

Интегральное уравнение для граничной задачи теплопроводности с дробной нагрузкой

В статье рассматривается краевая задача с дробно нагруженным уравнением теплопроводности в первом квадранте. Нагрузка имеет форму дробной производной Капуто, и порядок производной меньше порядка дифференциальной части. Обращением дифференциальной час...

К задаче об оптимальной стабилизации управляемых систем с конечным запаздыванием

В работе предложено решать задачу об оптимальной стабилизации для функционально-дифференциального уравнения на основе функционалов Ляпунова со знакопостоянной производной. Для этого используется метод предельных уравнений.

О разрешимости второй начально-краевой задачи для одномерного псевдопараболического уравнения с дробными производными

В одномерной ограниченной области исследована вторая начально-краевая задача для однородного псевдопараболического уравнения с дробной по времени производной Капуто. Установлены условия однозначной разрешимости рассматриваемой задачи в классе непреры...

Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка

В работе исследована обратная задача определения правой части для дифференциального уравнения с частными производными четвертого порядка с переопределениям во внутренних точках. Сначала с помощью функции Грина исходная прямая задача сводится к эквива...

Решение начальной задачи для линейных рекуррентных соотношений первого порядка в случае одношагового расщепления

Рассматривается начальная задача для неоднородного линейного рекуррентного соотношения первого порядка с операторными коэффициентами A,B, задаваемыми квадратными числовыми матрицами. Оператор A необратим, вследствие чего задача имеет решение не при к...

Задачи Дарбу и Коши для линейных гиперболических уравнений с постоянными коэффициентами

Многие явления механики, физики, биологии сводятся к исследованию гиперболических уравнений. Чтобы эти явления описать полностью для гиперболических уравнений, ставится задача Дарбу и для дальнейших изучений необходимо явное представление рассматрива...

Задать вопрос