Установившиеся значение температуры нагрева провода электрическим током является важным параметром режима воздушной линии электропередачи, определяющим сопротивление провода и габариты линии.
Ключевые слова: температура нагрева провода, потери электроэнергии, удельное сопротивление провода.
В период, когда происходит передача электроэнергии с проводов на электроприемники ее небольшая часть расходуется на сопротивление самих проводов, т. е. на их нагрев. Чем больше сопротивление провода и выше протекающий ток, тем больше на нем будет потеря напряжения. Нагрев кабеля способствует ухудшению работы контактов. В изолированных электропроводах повышение температуры может привести к ускоренному износу изоляции, ухудшению ее свойств, а также к пробою и даже короткому замыканию. Бесперебойное функционирование проводов и кабелей возможно только при температурах, не превышающих определенных значений, закрепленных ПУЭ на основании характеристик материалов и опыта эксплуатации.
Когда температура проводника t значительно выше температуры окружающей среды t 0 , теплота начинает отдаваться проводником в окружающую среду. При росте t, наступает тепловое равновесие, при котором количество теплоты, выделяемой в проводнике, равно количеству теплоты, отдаваемой в окружающую среду. В таком случае величина t остается постоянной.
Последующее возрастание тока при тех же условиях понижения температуры ведет к нарушению теплового баланса и нагреву проводника, которое может привести к аварии.
Определенная работа и практика позволила установить значения длительно допустимых температур нагрева проводников t доп , превышение которых приводит к ухудшению технических характеристик электрических сетей [1].
Таблица 1
Длительно допустимые температуры для проводников
Выбор или проверка сечения проводника по нагреву сводится к определению наибольшего рабочего тока в проводнике и его сравнению с I доп [1].
Вектор падения напряжения можно представить состоящим из продольной ( U) и поперечной ( δU) составляющих. Потеря напряжения определяется по формуле, из которой видно, что ΔU зависит от сопротивления, которое как раз и изменяется из-за чрезмерного нагрева:
,
где — вектор напряжения в начале линии, кВ; — вектор напряжения в конце линии, кВ; — ток проводника, А; R — активное сопротивление, Ом; X — реактивное сопротивление, Ом.
Рассмотрим изменение потери напряжения вследствие увеличения температуры окружающей среды на примере одноцепной линии напряжением 35 кВ. Согласно ПУЭ, по условиям механической прочности и возникновения короны, минимальное сечение провода воздушной линии 35 кВ составляет 70 мм 2 . Принимаем провод марки АС — 70/11 с параметрами: I доп = 265 Ампер. Удельные сопротивления провода составляют r 0 = 0,428 Ом/км; x 0 = 0,432 Ом/км. Мощность, передаваемая по линии: P p = 13700 кВт; Q p = 3040 кВар. Длина линии L = 8,4 км.
Определим потерю напряжения при температуре окружающей среды (t о = 20 о С):
,
где R1 — активное сопротивление линии, Ом; r0 — погонное активное сопротивление, Ом/км; L — длина линии, км;
,
где X1 — реактивное сопротивление линии, Ом; х0 — погонное реактивное сопротивление, Ом/км; L — длина линии, км
,
где ΔU — потеря напряжения, В; Pp — расчетная активная мощность, кВт; R1 — активное сопротивление линии, Ом; Qр — расчетная реактивная мощность, кВар; Х1 — реактивное сопротивление линии, Ом.
,
где δU — потери напряжения, %; ΔU — потеря напряжения, В; U н — номинальное напряжение, В.
Допустимая потеря напряжения составляет 5 %. Как видим, из расчета выше, в нормальных условиях окружающей среды и t о = 20 о С потери напряжения не выходят за рамки допустимого.
Определим потерю напряжения того же провода, в тех же условиях, но при температуре окружающей среды t о = 35 о С.
Чтобы учесть изменения температуры, воспользуемся формулой:
, где
— температурный коэффициент для алюминиевых проводов;
— разность между фактической и нормальной температурой, о С
Тогда:
,
где ΔU — потеря напряжения, В; Pp — расчетная активная мощность, кВ; R1 –активное сопротивление, Ом; Qр — расчетная реактивная мощность, кВар; Х1 — реактивное сопротивление, Ом.
,
где δU — потери напряжения, %; ΔU — потеря напряжения, В;
U н — номинальное напряжение, В.
Из-за увеличения сопротивления потеря напряжения выходит за рамки допустимого предела 5 %, что является нарушением нормативных требований по качеству электроэнергии несмотря на то, что в начальных проектных условиях отклонение напряжения находилось в пределах нормы. Отсюда следует необходимость учета температурного изменения сопротивления при проектировании линий электропередач. В ПУЭ приведены соответствующие корректирующие коэффициенты.
Температура проводов линии электропередачи является важным параметром режима воздушной линии, определяющим механическую прочность провода, габариты воздушной линии, уровни напряжения в узлах электрической сети.
Литература:
- Грунин О. М., Савицкий Л. В. Электроэнергетические системы и сети. Проектирование: учеб. пособие. Чита: Изд-во ЗабГУ, 2012.-183 с.
- Правила устройства электроустановок (ПУЭ. 7-е изд.). — М.: Изд-во НЦ ЭНАС, 2003. — 464 с.;