Искусственный интеллект. Перспективы разработки экспертных систем | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 30 ноября, печатный экземпляр отправим 4 декабря.

Опубликовать статью в журнале

Автор:

Рубрика: Информационные технологии

Опубликовано в Молодой учёный №32 (427) август 2022 г.

Дата публикации: 16.08.2022

Статья просмотрена: 487 раз

Библиографическое описание:

Иванов, К. К. Искусственный интеллект. Перспективы разработки экспертных систем / К. К. Иванов. — Текст : непосредственный // Молодой ученый. — 2022. — № 32 (427). — С. 3-4. — URL: https://moluch.ru/archive/427/94427/ (дата обращения: 16.11.2024).



Статья посвящена одному из самых перспективных направлений в области искусственного интеллекта — экспертным системам, а именно их перспективам в современном мире.

Ключевые слова: система, искусственный интеллект, экспертная система, знание, ключевая роль, данные.

Технологии искусственного интеллекта сильно расширили возможности разработчиков по решению неоднородных и нестандартных задач, требующих специфической обработки данных. Особо выделяются неформализованные задачи, которые решаются в рамках отдельного направления исследований по искусственному интеллекту — экспертные системы.

В традиционном программировании, с которым сталкивается большинство специалистов сферы информационных технологий, ключевую роль занимает алгоритм, четко описывающий процесс получения определенного результата из массива входных данных. Однако колоссальное число задач в нашей жизни не имеют алгоритмического решения либо это решение еще не придумано. Подобные задачи решаются субъективно, неконкретно, основываясь на опыте и интуиции специалистов. И именно решение подобных задач является одной из ключевых целей разработки экспертных систем.

Ядром любой экспертной системы являются знания. Они хранятся в специальном компоненте экспертной системы, который так и называется — база знаний. Как правило, в знаниях выделяют фактологические данные и экспертные правила. За наполнение систему знаниями отвечает эксперт. В простом виде в самом начале система наполняется большим набором практических данных эксперта, который после начинает тестировать систему, наполняя ее новыми знаниями или корректируя старые. Одним из ключевых аспектов, почему он может это делать, является то, что у экспертной системы есть объяснительный компонент, то есть система не просто даёт некое решение, но и показывает, как именно она рассуждала и на чем основывалась, делая те или иные выводы.

Процесс приобретения знаний является тем, что сильно отличает экспертные системы от других систем искусственного интеллекта. Обычно разработчики имеют дело с данными, например, большими массивами взводных и выходных знаний, которые используются для того, чтобы базово «научить» нейронную сеть, после чего процесс обучения продолжается на каждом новом наборе входных данных и оценки полученного результата. В экспертных же системах куда важнее, почему система сделала тот или иной вывод, и пополнение на основе этого понимания системы новыми знаниями. По сути дела после выполнения работ по разработке системы ключевым лицом для системы становится именно эксперт, задача которого передать весь свой опыт, знания и понимания дела системе.

Конечно, в области неформализованных задач человеческий фактор играет ключевую роль, ведь обучение системы ведет определенный эксперт или группа экспертов, с которыми могут быть не согласны эксперты другого толка. Подобные разногласия решаются компромиссом или уточнением ситуации, то есть добавлением деталей, благодаря которым познания экспертной системы становятся более полными.

Подобные системы имеют колоссальный потенциал. Ключевой сферой при этом видится образование, причём не стандартное школьное или университетское, а повсеместное, в том числе, на каждом рабочем месте.

К сожалению, в наши дни разрыв между тем, чему учат в образовательных учреждениях, и тем, что необходимо конкретным предприятиям, только растет. По этой причине компании вкладывают серьезные деньги в то, что «научить работать» каждого нового специалиста, которых на рынке ежегодно появляется почти миллион. И этот процесс требует воистину больших усилий: платить работнику зарплату за его обучение, отключать от работы специалистов для помощи, создавать корпоративные системы обучения, покупать различные курсы, приглашать экспертов, брать на себя риски скорого увольнения работника и… этот список можно, к большему несчастью предпринимателей, еще очень долго продолжать. И решение этого круга задач за счёт внедрения и эксплуатации экспертных систем приобретает совсем другой характер.

Представьте, что вместо постоянной передачи знаний от одного сотрудника к другому за счёт разговоров и обучающих сессий, все, кому позволяет уровень квалификации, будут дополнительно дублировать это в систему знаний предприятия. Конечно, она не наполнится ими за день и даже месяц, но это и не нужно. Самое главное — это создать процесс постоянного наполнения системы знаниями. И тогда в определённый момент она будет содержать в себе куда больше знаний, чем любой эксперт. Это создаст целей ряд преимуществ:

– Намного меньше времени специалистов компании будет уходить на обучение новичков;

– Понизится порог входа для выполнения тех или иных работ за счёт экспертного помощника в виде системы искусственного интеллекта;

– Уменьшится время обучения сотрудника до получения первых экономически эффективных действий для компании.

Таким образом, ключевые перспективы разработки экспертных систем заключаются в более эффективном использовании человеческих ресурсов любого предприятия за счёт создания единой богатой базы знаний и изменения подхода к образованию сотрудников. При этом такие системы могут появляться как для отрасли в целом, так для каждой компании в отдельности, отлично встраиваясь во внутренние процессы и экосистемы организаций.

Литература:

  1. Искусственный интеллект: В 3 кн. Кн. 1. Системы общения и экспертные системы: Справочник /Под ред. Э. В. Попова. — М.: Радио и связь, 1990. — 464 с.: ил.
  2. Искусственный интеллект: В 3 кн. Кн. 2. Модели и методы: Справочник /Под ред. Э. В. Попова. — М.: Радио и связь, 1990. — 304 с.: ил.
  3. Искусственный интеллект: В 3 кн. Кн. 3. Программные и аппаратные средства: Справочник /Под ред. Э. В. Попова. — М.: Радио и связь, 1990. — 304 с.: ил.
Основные термины (генерируются автоматически): искусственный интеллект, система, экспертная система, знание, ключевая роль, данные, задача, эксперт.


Похожие статьи

Интеллектуальные информационные системы

В статье автор рассмотрел ключевые концепции интеллектуальных информационных систем, их компоненты и области применения в различных отраслях

Теоретические аспекты инженерии знаний

Статья посвящена важным теоретическим проблемам в области исследования искусственного интеллекта, а именно теоретическим аспектам инженерии знаний, связанным с получением и структурированием знаний специалистов некоторой предметной области для их пос...

Методологии проектирования мультиагентных систем

В данной статье рассмотрены методологии проектирования мультиагентных систем, в том числе, применительно к созданию искусственного интеллекта. Приведен анализ популярных подходов к разработке информационных систем на всех этапах создания.

Применение экспертных систем для анализа и оценки информационной безопасности

В статье рассматривается вариант применения экспертной системы в роли составляющей комплекса мероприятий для обеспечения информационной безопасности.

Нейронные сети и искусственный интеллект

Данная статья посвящена искусственному интеллекту и нейронным сетям. Использование ИИ в современном обществе вносят новые формы в совершенствование интеллектуальных систем в сфере информационных технологий, в науке, образовании, культуре. История осн...

Новая парадигма экономического развития: институты, инновации и «экономика знаний»

В статье, посвященной проблеме формирования экономики знаний как новой формы экономической системы, проведен анализ особенностей процесса взаимодействия ключевых факторов данного процесса (институты, инновации, национальная инновационная система, инт...

Оптимизация бизнес-процессов предприятия с помощью искусственного интеллекта

В статье рассматриваются вопросы использования искусственного интеллекта для целей организации в части оптимизации бизнес-процессов. Также уделено внимание подходам к определению понятия и сущности искусственного интеллекта, представлены примеры внед...

Влияние цифровых технологий и искусственного интеллекта на развитие мировой экономики

Статья посвящена цифровым технологиям и искусственному интеллекту, их влиянию на современную мировую экономику. Автор анализирует значение отдельных видов цифровых технологий для современной мировой экономики. Проводится анализ внедрения искусственно...

Искусственный интеллект в строительной сфере: современное положение и перспективы будущего

Данная статья представляет собой попытку дать общее представление о том, что такое искусственный интеллект (ИИ). Также авторами рассматриваются некоторые способы применения систем с искусственным интеллектом в строительной отрасли: мониторинг деятель...

Программные агенты и мультиагентные системы

Статья посвящена одному из важных направлений в области исследований искусственного интеллекта, а именного таким интеллектуальным интернет-технологиям, как программные агенты и мультиагентные системы.

Похожие статьи

Интеллектуальные информационные системы

В статье автор рассмотрел ключевые концепции интеллектуальных информационных систем, их компоненты и области применения в различных отраслях

Теоретические аспекты инженерии знаний

Статья посвящена важным теоретическим проблемам в области исследования искусственного интеллекта, а именно теоретическим аспектам инженерии знаний, связанным с получением и структурированием знаний специалистов некоторой предметной области для их пос...

Методологии проектирования мультиагентных систем

В данной статье рассмотрены методологии проектирования мультиагентных систем, в том числе, применительно к созданию искусственного интеллекта. Приведен анализ популярных подходов к разработке информационных систем на всех этапах создания.

Применение экспертных систем для анализа и оценки информационной безопасности

В статье рассматривается вариант применения экспертной системы в роли составляющей комплекса мероприятий для обеспечения информационной безопасности.

Нейронные сети и искусственный интеллект

Данная статья посвящена искусственному интеллекту и нейронным сетям. Использование ИИ в современном обществе вносят новые формы в совершенствование интеллектуальных систем в сфере информационных технологий, в науке, образовании, культуре. История осн...

Новая парадигма экономического развития: институты, инновации и «экономика знаний»

В статье, посвященной проблеме формирования экономики знаний как новой формы экономической системы, проведен анализ особенностей процесса взаимодействия ключевых факторов данного процесса (институты, инновации, национальная инновационная система, инт...

Оптимизация бизнес-процессов предприятия с помощью искусственного интеллекта

В статье рассматриваются вопросы использования искусственного интеллекта для целей организации в части оптимизации бизнес-процессов. Также уделено внимание подходам к определению понятия и сущности искусственного интеллекта, представлены примеры внед...

Влияние цифровых технологий и искусственного интеллекта на развитие мировой экономики

Статья посвящена цифровым технологиям и искусственному интеллекту, их влиянию на современную мировую экономику. Автор анализирует значение отдельных видов цифровых технологий для современной мировой экономики. Проводится анализ внедрения искусственно...

Искусственный интеллект в строительной сфере: современное положение и перспективы будущего

Данная статья представляет собой попытку дать общее представление о том, что такое искусственный интеллект (ИИ). Также авторами рассматриваются некоторые способы применения систем с искусственным интеллектом в строительной отрасли: мониторинг деятель...

Программные агенты и мультиагентные системы

Статья посвящена одному из важных направлений в области исследований искусственного интеллекта, а именного таким интеллектуальным интернет-технологиям, как программные агенты и мультиагентные системы.

Задать вопрос