Источник стабильного тока или напряжения с импульсным регулированием относится к импульсной технике и электротехнике.
Актуальность данной работы заключается в том, что источник стабильного тока может быть использован, в соленоидах ламп бегущей волны, в обмотках электродвигателей, в установках с широким диапазоном входного нестабилизированного напряжения.
Целью данной работы является проработка схемотехнических вариантов реализации источника стабильного тока при входных напряжениях от 50 В до 200 В и токах нагрузки до 30 А, а также проведение моделирования его работы в среде MicroCap 9.0.
Из обзора технической литературы [1] известны линейные и импульсные стабилизаторы тока и напряжения. Большим недостатком линейных стабилизаторов является их низкий К. П. Д. при больших диапазонах входного напряжения. Вследствие этого перегрев ключевых элементов и сложности в их охлаждении для нормального функционирования. Наиболее близким вариантом для реализации источника стабильного тока, является понижающие импульсные стабилизаторы. Структурная схема приведена на рисунке 1.
Рис. 1: КЭ — ключевой элемент (транзистор); ИНД — индуктивный накопитель энергии (дроссель); ШИМ — шим-контроллер; Д — выпрямитель (диод); Ш — токоизмерительный шунт, НАГ — нагрузка
Предлагаемая структурная схема источника стабильного тока приведена на рисунке 2.
Рис. 2: КЭ — ключевой элемент (транзистор); ИНД — индуктивный накопитель энергии (соленоид или обмотка электродвигателя); ШИМ — шим-контроллер; Д — выпрямитель (диод); Ш — токоизмерительный шунт, ВД — схема вольтодобавки.
Предлагаемое решение, приведенное на рисунке 2, отличается от стандартный схемы, приведенной на рисунке 1, тем, что индуктивным накопителем энергии и одновременно нагрузкой является индуктивность соленоида лампы бегущей волны или индуктивность обмотки электродвигателя. Также в предлагаемом решении использована схема вольтодобавки, которая служит для насыщения ключевого элемента (транзистора) для уменьшения потерь в открытом состоянии и как следствие увеличивается К. П. Д. преобразователя.
По структурной схеме, приведенной на рисунке 2, проработан вариант схемотической реализации источника стабильного тока, приведённый на рисунке 3, а перечень элементов в таблице 1.
Рис. 3. Схема источника стабильного тока
Таблица 1
Перечень элементов
Позиционное обозначение |
Наименование |
C1 |
Конденсатор К10–17а-М47–50нФ±5 % |
С2 |
Конденсатор К10–17а-Н50–4,7мкФ±20 % |
DA1 |
Микросхема 1114ЕУ8 |
L |
Cоленоид или обмотка электродвигателя |
R1 |
Резистор С2–33–5кОм±5 % |
R2 |
Резистор С2–33–10кОм±5 % |
R3,R4 |
Резистор С2–33–5кОм±5 % |
R5 |
Резистор С2–33–1кОм±5 % |
R6 |
Резистор С2–33–5кОм±5 % |
R7,R8 |
Резистор С2–33–100 Ом±5 % |
R9,R10 |
Резистор С2–33–10 Ом±5 % |
R11 |
Резистор С2–33–1кОм±5 % |
Rш |
Сопротивление токоизмерительного шунта |
VD1 |
Диод 2Д237А |
VD2 |
Диод 2Д2997А |
VT1 |
Транзистор 2Т3117А |
VT2 |
Транзистор 2Т313А |
VT3 |
Транзистор 2П7190ВР1 |
VT4 |
Транзистор 2П7190КР1 |
VT5 |
Транзистор 2П7190ВР1 |
VT6 |
Транзистор 2П980Е |
Приведенная на рисунке 3 схема работает следующим образом: в момент подачи питания ШИМ-модуляция исключена на выходе микросхемы DA1 логический нуль, транзисторы VT3,VT5 заперты, транзистор VT8 отперт и находится в режиме истокового повторителя, подающего ток в соленоид или обмотку электродвигателя, который медленно нарастает, повышая регулирующее напряжение на токоизмерительном резисторе шунта до момента превышения определенного постоянного напряжения на входе 2 микросхемы DA1. При этом на выходе микросхемы DA1 появляется состояние логической единицы, которая отпирает транзисторы VT3,VT5, запирает транзистор VT8, отпирая непрерывным током соленоид или обмотку электродвигателя диод VD2. При этом конденсатор C2, заряженный ранее при закрытом состоянии транзисторов VT3,VT5 до уровня близкого напряжению источника +12В питания (он же уровень напряжения его стока Ucт), дозаряжается на величину суммы напряжений источников питания +12В и входного напряжения, обеспечивая в последующем периодическом режиме на затворе Uзт транзистора VT8 импульсное напряжение более импульсного напряжения Uст на стоке транзистора VT8 и его насыщение (Uст ≈ Uис) при очередном цикле работы ШИМ-модулятора, в виде прямоугольного треугольника [2].
Для подтверждения правильности выбора схемотехнического решения импульсного стабилизатора тока было проведено моделирование его работы в среде MicroCap 9.0 при разных напряжениях питания. Диаграммы работы импульсного стабилизатора тока при входном напряжении 50 В приведены на рисунке 4.
Рис. 4 Диаграммы работы преобразователя при входном напряжении 50 В
Как видно из рисунка 4, при входном напряжении 50 В схема работает, ток через Rш стабилен и равен 25 А. Напряжение на затворе транзистора VT8 равна 60 В, что больше напряжения его стоке равное 50 В, что свидетельствует о работе цепи вольтодобавки и как следствие минимальное падение напряжение на сток исток транзистора VT8, которое составляет 1,5 В.
Диаграммы работы импульсного стабилизатора тока при входном напряжении 200 В приведены на рисунке 5.
Рис. 5. Диаграммы работы преобразователя при входном напряжении 200 В
Как видно из рисунка 5 что при входном напряжении 200 В схема работает, ток через Rш стабилен и равен 25 А. Напряжение на затворе транзистора VT8 равна 210 В, что больше напряжения его стоке равное 200 В, что свидетельствует о работе цепи вольтодобавки и как следствие минимальное падение напряжение на сток исток транзистора VT8, которое составляет 1,5 В.
Из приведенного выше можно сказать, что работоспособность схемы подтверждена при входных напряжениях от 50 В до 200 В. При этом за счет ввода вольтдобавки сопротивление и напряжение на переходе сток-исток транзистора 2П830Е снизилось в 4 раза (с 6 до 1,5 В при токе 25 А), что уменьшило его импульсную мощность до 38 Вт вместо 150 Вт при большом токе 25А.
Литература:
- Граф Р., Шиитс В. «Энциклопедия электронных схем» том 7, часть 1, глава 7, стр.225, рисунок 27.1 М, ДМК 113184 2000г.
- Ж. «Контрольно-измерительная техника», Экспресс — информация ВИНИТИ № 7, 2006.