Рассматриваются только конечные группы. Пусть — непустое множество простых чисел. В статье для множества Фиттинга заданной группы установлены свойства инъектора в , где — нормальная подгруппа группы .
Ключевые слова: группа, конечная группа, множество Фиттинга группы, нормальная подгруппа, инъектор.
Рассматриваются только конечные группы. В современной теории групп большое внимание уделяется вопросам изучения подгрупп, определяемых посредством заданного класса групп . На этом пути были введены в рассмотрение -корадикалы, -максимальные подгруппы, -проекторы и многие другие подгруппы в группах. Понятие -инъектора группы было введено в рассмотрение в 1967 году в совместной работе Б. Фишера, В. Гашюца и Б. Хартли [12]. В настоящее время -инъекторы в конечных группах достаточно хорошо изучены, установлена их взаимосвязь с другими подгруппами в группах, а также описаны их свойства в зависимости от свойств класса (см., например, [10, 11, 13]). В работах [8, 9] было установлено, что при изучении -инъекторов в группах в качестве можно рассматривать не класс групп, а множество подгрупп исследуемой группы, обладающее некоторыми свойствами классов групп [11, c. 536]. Этот факт привел к возникновению понятия множества Фиттинга группы . Исследования в направлении, связанном с рассмотрением для множества Фиттинга заданной группы её инъекторов, проводились Н. Т. Воробьевым, Т. Б. Карауловой, М. Г. Семеновым и многими другими алгебраистами (см., например, [2, 6, 14]).
В работе [1] в качестве естественного обобщения понятия -проектора группы было введено в рассмотрение понятие -проектора группы, где — непустое множество простых чисел. Развивая данную идею, в работе [7] для класса групп были определены -инъекторы в группах и установлены их ключевые свойства. В статье [4] для множества Фиттинга группы введено в рассмотрение понятие -инъектора группы и установлены простейшие свойства таких подгрупп. Настоящая работа продолжает исследования в данном направлении. В теореме 1 для множества Фиттинга группы получены свойства -инъектора нормальной подгруппы из .
В работе используется терминология, принятая в книгах [3, 11]. Запись , , означает, что — подгруппа (соответственно, нормальная, субнормальная, максимальная нормальная подгруппа) группы .
Определение 1. Непустое множество подгрупп группы называется множеством Фиттинга группы [11, (VIII.2.1)], если выполняются следующие условия:
(1) из и следует, что ;
(2) из , , , следует, что ;
(3) из и следует, что .
Определение 2. Пусть — некоторое множество подгрупп группы . Подгруппа группы называется -максимальной подгруппой в [11, (VIII.2.5.a)], если и из и следует, что .
Определение 3. Пусть — множество подгрупп группы , . Тогда [11, (VIII.2.3.a)].
Замечание 1. Если — множество Фиттинга группы и , то — множество Фиттинга подгруппы [11, (VIII.2.3.a)].
Определение 4 . Пусть — группа, — множество Фиттинга группы , — непустое множество простых чисел. Подгруппа группы называется -инъектором группы , если -максимальная подгруппа в и для каждой субнормальной -подгруппы группы пересечение является -максимальной подгруппой в [4].
Замечание 2. Пусть — группа и — множество Фиттинга группы . Тогда из [11, (VIII.2.5.b)] следует, что всякий -инъектор группы является её -инъектором для любого множества простых чисел. Если совпадает с множеством всех простых чисел, то -инъектор группы является ее -инъектором.
Теорема 1. Пусть — группа, — множество Фиттинга группы , — непустое множество простых чисел, и -инъектор в . Тогда является -инъектором в , для любого .
Доказательство. Пусть — группа, — множество Фиттинга группы , и -инъектор в , . Покажем, что является -инъектором в . Ввиду определения 4, достаточно проверить, что -максимальная подгруппа в и для любой субнормальной -подгруппы из пересечение -максимальная подгруппа в .
- Установим, что -максимальная подгруппа в . Так как -инъектор в , то . Из того, что , и — множество Фиттинга группы , получаем (1). Пусть (2), , . Покажем, что . Пусть и . Тогда и . С учётом (2) имеем , т. е. . Покажем, что . Так как и , то по определению 1 (3) . Поскольку -инъектор в , то -максимальная подгруппа в . Тогда и поэтому . Таким образом, -максимальная подгруппа в .
- Пусть — субнормальная -подгруппа группы . Установим, что . Согласно (1), . Из по лемме 2.41 [3] получаем, что . Так как — множество Фиттинга группы и , то .
- Покажем, что пересечение является -максимальной подгруппой в . Пусть и (3), где . Установим, что . Пусть и . Тогда и . С учётом (3) получаем
(4).
Следовательно, (5). Ввиду леммы 2.14.1 (5) [5], — субнормальная -подгруппа группы . Так как -инъектор в , то -максимальная подгруппа в . Из того, что , и — множество Фиттинга группы , получаем и с учётом (5) приходим к выводу, что . Следовательно, и, ввиду (4), имеем . Поскольку и , то . Таким образом, -максимальная подгруппа в .
Из 1) — 3) следует, что является -инъектором в . Теорема доказана.
Следствие 1 [11, (VIII.2.7.)]. Пусть — группа, — множество Фиттинга группы , и -инъектор в . Тогда является -инъектором в , для любого .
Литература:
- Ведерников, В.А. проекторы и покрывающие подгруппы конечных групп / В. А. Ведерников, М. М. Сорокина // Сибирский математический журнал. — 2016. — Т. 57, № 6. — С. 1224–1239.
- Воробьев, Н. Т. Множества Хартли и инъекторы конечной группы / Н. Т. Воробьев, Т. Б. Караулова // Математические заметки. — 2019. — Т. 105, № 2. — С. 214–227.
- Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Монахов. — Мн.: Выш. шк., 2006. — 207 c.
- Новикова, Д. Г. О множествах Фиттинга и инъекторах конечных групп / Д. Г. Новикова, М. М. Сорокина // Материалы Международной научно-практической конференции «Теоретические и прикладные аспекты естественнонаучного образования в эпоху цифровизации». — Брянск: БГУ им. И. Г. Петровского, 2023. — С. 82–86.
- Путилов, С. В. Классы групп / С. В. Путилов, М. М. Сорокина. — Брянск: Белобережье, 2018. — 100 c.
- Семенов, М. Г. Инъекторы во множестве Фиттинга конечной группы / М. Г. Семенов, Н. Т. Воробьев // Математические заметки. — 2015. — Т. 97, № 4. — С. 516–528.
- Сорокина М. М. О инъекторах конечных групп / М. М. Сорокина, Д. Г. Новикова // Материалы VIII Всероссийской научно-практической конференции с международным участием «Современные проблемы физико-математических наук». — Орёл: ОГУ им. И. С. Тургенева, 2022. — С.194–198.
- Anderson, W. Fitting Sets in Finite Soluble Groups / W. Anderson // Ph. D. thesis. — Michigan State University. — 1973. — 270 p.
- Anderson, W. Injector in Finite Solvable Groups / W. Anderson // J. Algebra. –1975. — Vol. 36, № 3. — P. 333–338.
- Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L. M. Ezquerro. — Dordrecht: Springer, 2006. — 381 p.
- Doerk, K. Finite Soluble Groups / K. Doerk, T. Нawkes. — Berlin — New York: Walter de Gruyter, 1992. — 891 p.
- Fischer, B. Injectoren Endlicher Auflosbarer Cruppen / B. Fischer, W. Gaschutz, B. Hartley // Math. Z. — 1967. — Vol. 102, № 5. — P. 337–339.
- Guo, W. The Theory of Classes of Groups / W. Guo. — Beijing — New York: Science Press, 2000. — 251 p.
- Yang, N. On -Injectors of Fitting Set of a Finite Group / N. Yang, W. Guo, N. T. Vorob’ev // Communications in Algebra. — 2018. — Vol. 46, № 1. — P. 217–229.