В данной статье рассматриваются энергетические характеристики поверхности полипропиленового волкнита, модифицированного элементоксидными структурами.
Ключевые слова: полипропиленовые волокна, химическое модифицирование, молекулярное наслаивание, элементоксидные структуры, энергетические свойства.
На сегодняшний день к числу наиболее интересных и перспективных материалов в области практического применения относят полимерные материалы. Их применение связано как с доступностью сырья для производства, так и с возможностью комбинирования полимеров с веществами другой природы и структуры, позволяющей получать композиционные материалы с комплексом заранее заданных необходимых функциональных свойств [1].
Использование различных методов химического модифицирования, заключающихся в направленном изменении структуры и свойств материалов, путем введения в макромолекулы фрагментов иной химической природы, способствует значительному расширению областей их применения. Одним из наиболее эффективных способов модифицирования является применение химической нанотехнологии, основанной на принципах метода молекулярного наслаивания (МН) [2].
Основная идея метода МН состоит в проведении химических реакций на поверхности твердого тела между его функциональными группами и подводимыми извне реагентами в условиях максимального удаления от равновесия [2].
Целью работы является исследование влияния модифицирования ППВ элементоксидными структурами на смачиваемость и энергетические характеристики полученных композиционных материалов.
В качестве объекта исследования использовали полипропиленовый волокнистый материал (ППВ, № РЗН 2020/10280), изготовленный по технологии meltblown. В качестве низкомолекулярных реагентов для модифицирования поверхности полимерного волокнита использовали оксохлорид фосфора (V), диоксид-дихлорид хрома (VI), тетрахлорид титана (IV) и оксохлорид ванадия (V).
Синтез элементоксидных структур проводили на установке молекулярного наслаивания проточного типа (рисунок 1) путем обработки ППВ указанными реагентами в потоке осушенного газа-носителя (воздух) в течение 10, 20, 30 минут при 80 °C.
Рис. 1. Принципиальная схема установки молекулярного наслаивания: 1 — микрокомпрессор, 2, 3 — система осушки; 4 — ротаметр; 5 — ёмкость с жидким реагентом; 6 — реактор с нихромовой обмоткой; 7 — лабораторный автотрансформатор; 8– термопара; 9 — ПИД-регулятор; 10, 11 — барботеры с дистиллированной водой; 12–19 — краны
Перед проведением синтеза проверяли герметичность всех элементов предварительно собранной установки, в реактор загружали образцы ППВ, закрепляли термопару в кармане реактора, устанавливали необходимую температуру на ПИД-регуляторе.
Продувку реактора 6 с образцами ППВ проводили в потоке осушенного газа-носителя (воздуха) в течение 40 минут для удаления физически сорбированной воды и загрязнений. Температуру синтеза подбирали таким образом, чтобы полимер не претерпевал никаких фазовых превращений. Блок осушки 2, 3, включающий в себя последовательно подключенные адсорберы с цеолитом, силикагелем и P 2 O 5 , позволил добиться степени осушки воздуха, нагнетаемого микрокомпрессором 1, до точки росы -55 °C.
Далее осуществлялась обработка полипропиленового волокнита парами галогенидов, подаваемых в реактор потоком осушенного воздуха (процесс хемосорбции). После окончания стадии хемосорбции удаляли избыток реагента и побочный продукт реакции (хлороводород) из реактора в барботер с водой 10 с помощью продувки реактора осушенным воздухом. Парофазный гидролиз осуществляли аналогичным образом. После завершения гидролиза из реактора также удаляли избыток паров воды и побочный продукт реакции (хлороводород) . Об окончании процесса судили по прекращению выделения хлороводорода.
Таким образом, были синтезированы монокомпонентные фосфор-, хром-, ванадий- и титаноксидные структуры на полипропиленовом волокните.
Энергетические характеристики поверхности исходного ППВ и модифицированных образцов определяли путем измерения краевых углов смачивания двумя тестовыми жидкостями (водой и глицерином) с помощью прибора DSA14 (фирмы KRUSS, Германия).
Установлено, что модифицирование поверхности ППВ элементоксидными структурами приводит к незначительному изменению смачиваемости полученных композиционных образцов по сравнению с исходным полимером (таблица 1).
Так, в результате обработки ППВ парами POCl 3 , TiCl 4 и VOCl 3 краевой угол смачивания водой уменьшается на 1,2°-5,1°. Образование хромоксидных структур на ППВ приводит к более интенсивному уменьшению краевого угла смачивания водой на 7,7°, и, соответственно, к большей гидрофилизации волокон полипропилена.
Таблица 1
Значения краевых углов смачивания для исследуемых образцов
№ |
Образец |
Время хемосорбции, мин |
Краевой угол смачивания, θ, ° |
|
Вода |
Глицерин |
|||
1 |
ПП-исх |
- |
123,6±1,2 |
126,7±0,5 |
2 |
ПП-P-10 |
10 |
122,8±1,5 |
125,9±1,0 |
ПП-P-20 |
20 |
122,4±1,6 |
125,4±0,5 |
|
ПП-P-30 |
30 |
123,5±2,0 |
125,3±0,5 |
|
3 |
ПП-Ti-10 |
10 |
120,7±2,0 |
123,4±0,9 |
ПП- Ti-20 |
20 |
119,8±1,6 |
123,1±0,2 |
|
ПП-Ti-30 |
30 |
119,2±0,9 |
122,7±1,1 |
|
4 |
ПП-V-10 |
10 |
119,1±1,3 |
122,6±0,7 |
ПП- V-20 |
20 |
119,1±1,6 |
122,1±0,9 |
|
ПП-V-30 |
30 |
118,5±1,4 |
121,9±1,4 |
|
5 |
ПП-Cr-10 |
10 |
115,9±1,7 |
119,3±1,1 |
На основании полученных экспериментальных данных рассчитали свободную энергию поверхности и ее полярную и дисперсионную составляющие по методу Фоукса [3]. Для модифицированных образцов ППВ характерно незначительное увеличение поверхностной энергии по сравнению с исходным полимером (рисунок 2).
Обработка ППВ фосфор-, титан- и ванадийоксидными структурами приводит к увеличению на 0,30–1,68 мДж/м 2 свободной энергии образцов по сравнению с исходным полимером. Однако, фосфорсодержащие образцы ППВ отличаются уменьшением свободной энергии поверхности и, в частности, ее полярной составляющей, с увеличением времени обработки ППВ парами оксохлорида фосфора (V).
Рис. 2. Свободная энергия поверхности исходного ППВ и модифицированных образцов
Самой высокоэнергетической является поверхность полимера с хромоксидными структурами, так как свободная энергия поверхности составляет 7,42 мДж/м 2 .
Литература:
- Кочеткова, А. С. Исследование нанокомпозитов на основе поливинилхлорида методами атомно-силовой микроскопии / А. С. Кочеткова, Н. Ю. Ефимов, Е. А. Соснов // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. — 2013. — № 1 (165). — С.114–119.
- Малыгин, А. А. Технология молекулярного наслаивания и некоторые области ее применения / А. А. Малыгин // Журнал прикладной химии. — 1996. — Т. 69. — № 10. — С. 1585–1593.
- Fowkes, F. M. Attractive forces at interfaces / F. M. Fowkes // Industrial and Engineering Chemistry. — 1964. — Vol. 56, No 12. — P. 40–52.