В статье представлены принципы работы абсорбционных колонн для осушки попутного нефтяного газа. Рассмотрены различные виды насадок адсорбционных колонн. Целью работы является оптимальный выбор насадок, преимущества и недостатки.
Ключевые слова: осушка, абсорбция, абсорбер, нефтяной газ.
Осушка природного газа — это процесс извлечения влаги из попутного нефтяного газа с целью для дальнейшего использования и предотвращения гидратообразования при его транспортировке. Одним из наиболее важных элементов оборудования для осушки газа является Абсорбер.
Аппараты, в которых проводят процессы абсорбции называют абсорберами, а десорбции — десорберами [1]. Абсорбер, также называемая контактной колонна, представляет собой место, где природный газ контактирует с триэтелингликолем системы с целью высвобождения увлеченной воды и углеводородов. Этот гликоль «поглощает» воду из газа и выносит ее из абсорбера.
В своей работе мы хотели остановится на различных конструкциях абсорберов (рис.1), предлагаемых компанией Кимрай. Внутри этих колон производители устанавливают 3 различных типа внутренних конструктивных систем, облегчающих этот процесс:
– Регулярная насадка
– Нерегулярная насадка
– Колпачковая тарелка
Рис. 1. Типы абсорберов для осушки газа [5]
Давайте разберем, что такое насадка.
Абсорбционные колонны состоят из насадки, которая бывает различных форм и материалов. Он обеспечивает поверхность, на которой может происходить контакт и поглощение. Насадка обеспечивает эффективный процесс абсорбции благодаря большей площади контакта.
Для эффективной абсорбции абсорбционной колонны материалу насадки необходимо достаточно места, чтобы жидкость могла проходить сквозь нее и не вызывать падения давления. В то же время он также должен обеспечивать необходимый контакт между жидкостью и газом.
Разберем два типа дизайна насадки: регулярные и нерегулярные (рис.2).
Рис. 2. Регулярные и нерегулярные насадки [5]
Регулярная насадка
В регулярной насадке (рис. 3) используются большие фиксированные насадочные конструкции, которые придают жидкости определенную форму. Этот материал содержит отверстия, канавки, рифление и другие фактурные элементы, позволяющие увеличить площадь поверхности.
Каждый слой регулярной насадки в блоке абсорбера простирается на весь диаметр колонны и повернут на 90° относительно предыдущего. Диаметр насадки может быть практически разного размера.
Принцип работы регулярной насадки при осушке природного газа.
Рис. 3. Абсорбер с регулярными насадками [5]
Гликоль равномерно распределяется в верхней части колонны и стекает вниз через регулярную насадку, покрывая поверхность при движении.
В зависимости от размера колонны можно использовать распределительный лоток для повторного равномерного распределения гликоля по насадке. Это предотвращает попадание гликоля только на одну сторону абсорбера.
Природный газ поступает в колонну снизу и движется вверх, контактируя с гликолем на пути вниз, который поглощает воду из газа.
Нерегулярная насадка
В абсорбере с нерегулярной насадкой (рис. 4) колонна заполнена нержавеющими кольцами Палля или керамическими седлами. Эта нерегулярная насадка хаотичным образом заполняет колонну.
Сухой гликоль, поступающий в верхнюю часть колонны, должен течь по всей насадке, что позволяет равномерно распределять гликоль по колонне. Газ поступает в нижнюю часть колонны и движется вверх, контактируя с гликолем на пути вниз, который поглощает влагу из газа.
Если насадка должна быть выше 10 футов для удовлетворения потребностей в удалении воды, можно использовать распределительный лоток для сбора гликоля и его равномерного распределения по колонне, чтобы избежать образования каналов.
Рис. 4. Абсорбер с нерегулярными насадками [5]
Нерегулярная насадка дешевле и ее легче загружать и вынимать, чем регулярную упаковку.
Как нерегулярные, так и регулярные насадочные колонны имеют меньший перепад давления и лучше справляются с пенящимися и агрессивными жидкостями, чем тарельчатые колонны.
Абсорбер с колпачковыми тарелками
Третий и наиболее распространенный тип абсорбционной колонны представляет собой тарельчатую конструкцию с пузырьковыми крышками (рис.5). В этой конструкции горизонтальные металлические лотки уложены друг на друга через каждые 24 дюйма в колонне.
Сухой гликоль поступает в колонну сверху и разливается по пузырьковым крышкам. Газ поднимается из-под них и просачивается через отверстия в крышках.
Уровень гликоля удерживается на каждом лотке с помощью перегородки, прежде чем он пройдет через сливную трубу к следующему лотку.
Рис. 5. Абсорбер с колпачковыми тарелками [5].
С каждым лотком гликоль поглощает больше водяного пара из газа. Когда гликоль выходит из нижней части колонны, он насыщается водой и называется влажным гликолем.
Газ, идущий вверх, становится суше после каждой тарелки, поскольку пары воды поглощаются гликолем.
Тарельчатые колонны обеспечивают высокую осушку газа, чем насадочные колонны, и лучше справляются с более низкими нормами жидкости и твердых частиц.
Показатели производительности
Производительность абсорбера в первую очередь определяется скоростью газа через колонну. Для больших объемов газа потребуются колонны большего размера; поэтому двумя вариантами являются регулярные конструкции или конструкции тарелок.
Коэффициент регулирования абсорбера представляет собой рабочий диапазон сосуда как отношение максимального расхода к минимальной производительности.
Например, если колонна рассчитана на максимальный расход 10 мм3/сут, а минимум на 2 мм3/сут, коэффициент снижения будет 5:1 [5].
В тарельчатой колонне как правило, более экономичным оказывается вариант работы с повышенным числом тарелок, в сравнении с расчетным, и сравнительно небольшим удельным расходом абсорбента, несколько превышающим минимальный его расход [1], [2], [3], [4]. В тарельчатой колонне слишком большая скорость нарушит структуру потока гликоля и разрушит жидкостные уплотнения в точках, где сливные стаканы тарелок встречаются с тарелками. В результате гликоль вымывается из колонны вместе с газом.
Из-за конструкции регулярной насадки скорости газа могут быть выше, чем в тарельчатых колоннах, поскольку гликоль не будет вымываться из колонны при высоких скоростях газа.
Литература:
1. Дытнерский Ю. И. Процессы и аппараты химической технологии. Часть 2, Москва, Химия 1995.-368с.
2. Дытнерский Ю. И. Процессы и аппараты химической технологии. Часть 1-М.: Химия, 1995.-400с.
3. Бекиров Т. М. Первичная переработка природных газов. — М.: Химия, 1987.-256с.
4. Балыбердина И. Т. Физические методы переработки и использования газа. -М.: Недра, 1988.-248с.
5. https://kimray.com/training