Обзор некоторых алгоритмов нестрогого сопоставления записей применительно к задаче исключения дублирования персональных данных | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Автор:

Рубрика: Информационные технологии

Опубликовано в Молодой учёный №5 (52) май 2013 г.

Статья просмотрена: 2710 раз

Библиографическое описание:

Нгуен, Ной Хыу. Обзор некоторых алгоритмов нестрогого сопоставления записей применительно к задаче исключения дублирования персональных данных / Ной Хыу Нгуен. — Текст : непосредственный // Молодой ученый. — 2013. — № 5 (52). — С. 163-166. — URL: https://moluch.ru/archive/52/6873/ (дата обращения: 19.12.2024).

В работе рассматриваются некоторые алгоритмы нестрого сопоставления строк как ключевой части алгоритмов нестрогого сопоставления записей баз данных, содержащих персональные данные, применительно к задаче исключения дублирования персональных данных.

В современных поисковых системах применяется поиск по ключевым словам (терминам), все методы которого можно разделить на три группы: поиск на точное соответствие, поиск с учетом изменяемости слова и нестрогий поиск. В данной работе мы рассматриваем нестрогий поиск.

Нестрогий поиск является методом поиска строк, которые соответствуют шаблону приблизительно, а неточно, что позволяет находить строки с ошибками.

Рассмотрим следующие алгоритмы нестрогого поиска:

-        хеширование по сигнатуре;

-        БК-дерево.

Алгоритм хеширование по сигнатуре (ХС) сначала был описан Бойцовым Л.М [1, 2,3] и до сих пор остается наиболее распространенным методом поиска, допускающим неточное задание терминов запроса. Это простой и очень эффективный алгоритм для работы в больших коллекциях строк.

Пусть задан непустой алфавит  и известны вероятности появления различных символов алфавита. Пусть также на множестве символов  задана функция , отображающая буквы в числа от 1 до m. Эта функция, как несложно видеть, задает разбиение алфавита на m подмножеств.

Определение. Сигнатурой  слова  будем называть вектор размерности m, k-ый элемент которого равняется единице, если в слове  есть символ  такой, что, и нулю в противном случае. Номером сигнатуры слова будем называть число . [2]

 является хеш-функцией, отображающей множество слов в отрезок целых чисел от 0 до , что позволяет организовать словарь в виде хеш-таблицы.

Пусть слово  получено из  в результате одной операции редактирования: замены, добавления (удаления) или перестановки символов. Битовые векторы  и  отличаются не более чем в одном разряде в случае операции добавления (удаления), и не более чем двух разрядах — в случае замены. Несложно также видеть, что, если при замене символов изменяются два элемента сигнатуры, то общее количество единиц остается неизменным, а произвольные перестановки, вообще, не влияют на сигнатуру.

Метод хеширования по сигнатуре обладает следующими достоинствами:

-        позволяет осуществлять с высокой скоростью поиск на точное равенство и поиск, допускающий одну-две «ошибки» в задании поискового запроса;

-        ХС эффективно, как в случае «прямых» чтений с диска, так и из кэша;

-        ХС использует компактный индекс. При правильном выборе параметров объем индекса не более чем на 10–20 % превышает размер файла, содержащего список терминов;

-        отличается простотой реализации.

ХС присущ и один довольно существенный недостаток: он медленно работает, если индекс фрагментирован: то есть в том случае, если списки слов с одинаковыми сигнатурами разбросаны по несмежным секторам на диске. В настоящее время это не является большой проблемой, потому что, с одной стороны, размеры памяти компьютера часто позволяют загрузить словарь целиком, а с другой стороны, дефрагментация словаря, как правило, осуществляется в течение нескольких минут.

Процесс вычисления хеша: каждому биту хеша сопоставляется группа символов из алфавита. Бит 1 на позиции i в хеше означает, что в исходном слове присутствует символ из i-ой группы алфавита. Порядок букв в слове абсолютно никакого значения не имеет.

Хеш

Список слов

0000000000000

• • •

1111011100001

АВТОПРЕДПРИЯТИЕ, БЕЗОТРАДНАЯ, БЕРЕРИНАРИЯ, • • •

1111011100010

ПРЕВРАТНЫЙ, БЕЗРАССУДНЫЙ, АНАПЕСТОИДНЫЙ, • • •

1111011100011

СОРИЕНТИРОВАТЬСЯ, БЕСПРЕПЯТСТВЕННЫЙ, • • •

1111111111111

ЛЕГКОИСЧЕРПЫВАЮЩИХСЯ, ВЫСОКОРАЗРЕШАЮЩИХ, • • •

Удаление одного символа либо не изменит значения хеша (если в слове еще остались символы из той же группы алфавита), либо же соответствующий этой группе бит изменится в 0. При вставке, аналогичным образом либо один бит встанет в 1, либо никаких изменений не будет. При замене символов хеш может либо вовсе остаться неизменным, либо же изменится в 1 или 2 позициях. При перестановках никаких изменений и вовсе не происходит, потому что порядок символов при построении хеша, как и было замечено ранее, не учитывается. Таким образом, для полного покрытия k ошибок нужно изменять не менее 2k бит в хеше. Время работы, в среднем, при k «неполных» (вставки, удаления и транспозиции, а также малая часть замен) ошибках:.

Далее рассмотрим алгоритм BK-деревья [4, 5]. Деревья Баркхарда-Келлера являются метрическими деревьями, алгоритмы построения таких деревьев основаны на свойстве метрики отвечать неравенству треугольника:

Это свойство позволяет метрикам образовывать метрические пространства произвольной размерности. Такие метрические пространства не обязательно являются евклидовыми, так, например, метрики Левенштейна и Дамерау-Левенштейна образуют неевклидовы пространства. На основании этих свойств можно построить структуру данных, осуществляющую поиск в таком метрическом пространстве, которой и являются деревья Баркхарда-Келлера.

BK-дерево

Улучшения:

Можно использовать возможность некоторых метрик вычислять расстояние с ограничением, устанавливая верхний предел, равный сумме максимального расстояния к потомкам вершины и результирующего расстояния, что позволит немного ускорить процесс:

Описанные выше алгоритмы были реализованы для сравнения скорости их работы. Реализаця выполнена на плтформе.NET Framework 3.5 и языке С#. Тестирование осуществлялось на компьютере с Intel Core i7 (2.93GHz), 6Gb ОЗУ, ОС –Windows 7 SP1.

Время работы алгоритмов:

Кол-во записей

Кол-во потоков

Время работы алгоритмов (с)

Хеширование

БК–дерево

Полный–перебор

1000

1

0,019

0,13

9,6

2

0,016

0,09

4,96

5000

1

0,45

1,06

248,22

2

0,33

0,57

124,58

10000

2

0,56

1,34

494,24

4

0,4

0,86

289,15

В таблице результатов показано время работы алгоритмов в сравнении с алгоритмом полного перебора. Заметим, что реализованные алгоритмы работают во много раз быстрее чем полный перебор всех элементов.

Чтобы оценить эффективность работы реализованных алгоритмов, мы провели тесты на большом количестве строк (до миллиона).(с 1–10 тыс. приведено выше).

Кол-во строк (тыс.)

Кол-во потоков

Время работы (с)

Хеширование

БК–дерево

50

2

11,56

10,33

4

7,21

6,2

100

2

45,7

25,13

4

27,86

14,67

200

4

106,86

61,43

6

97,16

36,01

500

4

48,17

114,24

6

44,64

99,67

1000

4

185,08

252,29

6

168,5

222,47

График приведен ниже. Заметим, что с меньшим количеством строк (до двухсот тысяч), БК–дерево работает быстрее чем хеширование. Но с увеличением количества строк хеширование оказывается эффективнее, т.к количество операций автоматически уменьшается на 1 для каждой сравнительной строки.

Проведенные исследования дают возможность сделать вывод, что для большой базы данных оба алгоритма, рассмотренные высшее, работают достаточно быстро и эффективно. Они дают возможность нахождения больших количеств дубликатов с большой вероятностью за допустимое время. Применение этих алгоритмы на практике позволит сократить время поиска и уменьшить время отклика программного обеспечения.

Литература:

1.         Бойцов Л. М. Классификация и экспериментальное исследование современных алгоритмов нечеткого словарного поиска [текст] // Электронные библиотеки: перспективные методы и технологии, электронные коллекции: RCDL2004: тр. 6-й Всеросс. науч. конф. URL: http://www.rcdl.ru/papers/2004/paper27. pdf (дата обращения: 10.01.10).

2.         Бойцов Л. М. Поиск по сходству в документальных базах данных: хеширование по сигнатуре оптимальное соотношение скорости поиска, простоты реализации и объема индексного файла. [текст]. // Программист. — 2001. — N 1. http://itman.narod.ru/articles/articles_fz_search.html#p8

3.         Бойцов Л. М. Использование хеширования по сигнатуре для поиска по сходству. Прикладная математика и информатика. М. Изд-во факультета ВМиК, МГУ 2000, № 7.

4.         http://en.wikipedia.org/wiki/BK-tree. [Электронный ресурс].

5.         http://hamberg.no/erlend/posts/2012–01–17-BK-trees.html. [Электронный ресурс].

Основные термины (генерируются автоматически): нестрогий поиск, алгоритм, время работы алгоритмов, время работы, группа алфавита, дерево, замена символов, поиск, полный перебор, список слов.


Похожие статьи

Восстановление простых линейных и итерационных функций средствами MATLAB

В данной статье рассматривается метод восстановления простых функций, сохраненных в виде p-файлов, средствами MATLAB. В качестве основного инструмента используется встроенный отладчик и функция dbstop. Применение описанных в статье методов позволяет ...

Методы классификации в решении задач нечеткого сравнения текстовых данных

В рамках данной статьи были рассмотрены методы машинного обучения для решения задачах нечеткого поиска совпадений в фрагментах текстовых данных в рамках предметной области работы с документами, содержащими перечни материально технических ресурсов. Вы...

Цифровая обработка дважды стохастических моделей случайных полей

В настоящей статье представлен краткий обзор алгоритмов цифровой обработки дважды стохастических моделей. Основное внимание уделяется алгоритмам фильтрации и оценивания параметров. Также рассмотрены некоторые алгоритмы имитации таких случайных полей.

Выбор архитектуры локальной сети при проектировании систем реального времени

В данной работе сформулирована задача выбора архитектуры локальной сети при проектировании системы реального времени. Предложен метод решения задачи, основанный на построении графа передач данных, передаваемых между станциями сети, построении матрицы...

Обзор методов и средств автоматизированного сбора информации с новостных лент

Настоящая работа посвящена обзору источников данных с новостных лент в сети Интернет, программных средств хранения неструктурированных текстовых данных, лингвистических и статистических методов представления текстовой информации.

Алгоритм сжатия текстовых файлов

В статье рассматривается метод эффективного кодирования текстовой информации. В отличие от большинства существующих методов, большая эффективность кодирования и сжатия текста достигается за счет учета вероятностей положения алфавита символов на разли...

Сравнительный анализ алгоритмов сортировки данных в массивах

Статья посвящена проблеме выбора оптимального алгоритма сортировки данных в массивах, что предполагает сравнительный анализ алгоритмов. Рассмотрены алгоритмы устойчивой и неустойчивой сортировки; непрактичные алгоритмы; алгоритмы, не основанные на ср...

Использование кодеков в подготовке исходных данных для обучения искусственной нейронной сети

В данной работе решается задача подготовки исходных данных (обучающей выборки) для использования в обучении искусственной нейронной сети, распознающей образы в видео. Анализируется тенденции популярности тем «Большие данные» и «Глубокое обучение», а ...

Алгоритмы решения комбинаторных задач по теме «Раскраски»

В данной статье автор рассматривает некоторые алгоритмы решения комбинаторных задач, основанных на идее применения раскраски в несколько цветов, а также их применение для решения олимпиадных задач по математике.

Особенности системы задач на исследование расположения корней квадратного трёхчлена при обучении учащихся основной школы решению задач с параметром

В статье автор раскрывает особенности построения системы задач на исследование расположения корней квадратного трехчлена, способствующих формированию у учащихся основной школы умения решать задачи с параметром.

Похожие статьи

Восстановление простых линейных и итерационных функций средствами MATLAB

В данной статье рассматривается метод восстановления простых функций, сохраненных в виде p-файлов, средствами MATLAB. В качестве основного инструмента используется встроенный отладчик и функция dbstop. Применение описанных в статье методов позволяет ...

Методы классификации в решении задач нечеткого сравнения текстовых данных

В рамках данной статьи были рассмотрены методы машинного обучения для решения задачах нечеткого поиска совпадений в фрагментах текстовых данных в рамках предметной области работы с документами, содержащими перечни материально технических ресурсов. Вы...

Цифровая обработка дважды стохастических моделей случайных полей

В настоящей статье представлен краткий обзор алгоритмов цифровой обработки дважды стохастических моделей. Основное внимание уделяется алгоритмам фильтрации и оценивания параметров. Также рассмотрены некоторые алгоритмы имитации таких случайных полей.

Выбор архитектуры локальной сети при проектировании систем реального времени

В данной работе сформулирована задача выбора архитектуры локальной сети при проектировании системы реального времени. Предложен метод решения задачи, основанный на построении графа передач данных, передаваемых между станциями сети, построении матрицы...

Обзор методов и средств автоматизированного сбора информации с новостных лент

Настоящая работа посвящена обзору источников данных с новостных лент в сети Интернет, программных средств хранения неструктурированных текстовых данных, лингвистических и статистических методов представления текстовой информации.

Алгоритм сжатия текстовых файлов

В статье рассматривается метод эффективного кодирования текстовой информации. В отличие от большинства существующих методов, большая эффективность кодирования и сжатия текста достигается за счет учета вероятностей положения алфавита символов на разли...

Сравнительный анализ алгоритмов сортировки данных в массивах

Статья посвящена проблеме выбора оптимального алгоритма сортировки данных в массивах, что предполагает сравнительный анализ алгоритмов. Рассмотрены алгоритмы устойчивой и неустойчивой сортировки; непрактичные алгоритмы; алгоритмы, не основанные на ср...

Использование кодеков в подготовке исходных данных для обучения искусственной нейронной сети

В данной работе решается задача подготовки исходных данных (обучающей выборки) для использования в обучении искусственной нейронной сети, распознающей образы в видео. Анализируется тенденции популярности тем «Большие данные» и «Глубокое обучение», а ...

Алгоритмы решения комбинаторных задач по теме «Раскраски»

В данной статье автор рассматривает некоторые алгоритмы решения комбинаторных задач, основанных на идее применения раскраски в несколько цветов, а также их применение для решения олимпиадных задач по математике.

Особенности системы задач на исследование расположения корней квадратного трёхчлена при обучении учащихся основной школы решению задач с параметром

В статье автор раскрывает особенности построения системы задач на исследование расположения корней квадратного трехчлена, способствующих формированию у учащихся основной школы умения решать задачи с параметром.

Задать вопрос