Использование российскими и зарубежными банками методов интеллектуального анализа данных при проведении расчетных операций | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 30 ноября, печатный экземпляр отправим 4 декабря.

Опубликовать статью в журнале

Автор:

Научный руководитель:

Рубрика: Экономика и управление

Опубликовано в Молодой учёный №22 (521) май 2024 г.

Дата публикации: 02.06.2024

Статья просмотрена: 12 раз

Библиографическое описание:

Ильин, И. А. Использование российскими и зарубежными банками методов интеллектуального анализа данных при проведении расчетных операций / И. А. Ильин. — Текст : непосредственный // Молодой ученый. — 2024. — № 22 (521). — С. 271-273. — URL: https://moluch.ru/archive/521/115132/ (дата обращения: 16.11.2024).



В статье рассматривается актуальность интеллектуального анализа данных в проведении расчетных операций и использование данного метода анализа в отечественной и зарубежной практике.

Ключевые слова: интеллектуальный анализ данных, расчетные операции, банк, Big Data, российский опыт, зарубежный опыт.

Все большее распространение получают технологии обработки больших данных в финансовом секторе. Большие данные используются практически во всех крупных организациях, которые оказывают финансовые услуги. Рассмотрим понятие термина «большие данные». Большие данные (big data) — это информационный ресурс, предполагающий наличие следующих критериев:

– большой объем содержащейся информации;

– большой скорости получения, сбора и обработки информации;

– разнообразие данных — различные типы используемых данных, как структурированных, так и неструктурированных.

Актуальность интеллектуального анализа данных в проведении расчетных операций заключается в следующем:

– сложность обработки данных. IDC (International Data Corporation) прогнозирует, что к 2025 году мировая сфера данных вырастет до 175 зеттабайт, в 5 раз больше, чем в 2018 году. Это подтверждает, что количество данных, которые приходится обрабатывать, увеличивается экспоненциально [1].

– борьба с мошенниками и мошенничеством в целом. В 2022 году наблюдался рост незаконных операций без ведома клиентов на 4,29 %, в сравнении с 2021 годом. Это связано с бурным развитием новых дистанционных платежных сервисов и увеличения объема денежных переводов на 39 %, достигнув общего объема в 1458,6 трлн рублей, через использование электронных средств платежа, включая платежные карты и другие электронные методы платежей. Более подробная информация об общем объеме и количестве операций, осуществленных без согласия клиентов, представлена на рисунке 1.

Общий объем и количество операций без согласия клиентов [2]

Рис. 1. Общий объем и количество операций без согласия клиентов [2]

– автоматизация и увеличение скорости расчетов. Автоматизация влечёт за собой повышение эффективности, снижение количества ошибок, улучшение скорости и масштабируемости, а также позволяет принимать правильные решения.

На данный момент сложно создать стопроцентный автоматизированный продукт и обучить программу на выявление всех особенностей, поэтому важно развивать проекты с возможностью для адаптации [3].

Как и у любой новой технологии, при её применении возникает ряд проблем, которые нужно обязательно учитывать при использовании. Среди таких проблем можно выделить:

– Необходимость обеспечения информационной безопасности;

– Риск вторжения в частную жизнь клиентов финансовых организаций при сборе и использовании данных;

– Угрозу принятия предвзятых или дискриминационных решений;

– Возможность систематических ошибок;

– Влияние характера используемых данных (их достоверность) для обучения моделей на принятие решений автоматизированной системы;

– Недостаточное правовое регулирование;

Использование интеллектуального анализа данных при проведении расчетных операций обладает потенциалом для развития в таких направлениях как: мониторинг и анализ транзакций в режиме реального времени; прогнозирование поведения потребителей и рынка на базе исторических данных. Данные направления позволят банкам увеличить уровень безопасности данных и средств клиентов, уменьшить объем убытков, связанных с мошенничеством и сэкономить людские ресурсы за счет автоматизации операций анализа расчетных операций.

В России на практике, к использованию данного метода анализа данных уделяют большое внимание.

Система транзакционного антифрода, действующая в СберБанке, взаимодействует с антифрод-системами ведущих мобильных операторов, что обеспечивает ей возможность отслеживания мошеннической активности. В 2022 году было зарегистрировано огромное количество мошеннических звонков — 1,5 млрд, среднедневная частота которых составила более 5 млн, включая звонки от роботизированных виртуальных ассистентов [4].

Также функционирует программа «Знай своего клиента», к которой присоединены все финансовые учреждения. Начиная с 1 июля 2022 года, Банк России предоставляет им информацию о группе рисков, которую могут представлять юридические и индивидуальные предпринимательские субъекты для совершения сомнительных операций [5]. Используя эту информацию, банки могут классифицировать своих клиентов по группам риска и определить стратегию работы с каждым из них. SberCIB Terminal собственной платформе СберБанка для заключения сделок на финансовых рынках в режиме онлайн. Благодаря алгоритмам торговые операции можно проводить автоматически, с минимальным участием.

ЦБ РФ (Центральный банк Российской Федерации), Росфинмониторинг (Федеральная служба по финансовому мониторингу) и пять крупных банков реализуют пилот по установлению связей между фиатными и криптовалютными операциями пользователей. Об этом пишет РБК со ссылкой на заявление директора по управлению портфелем проектов компании «Иннотех» Ильи Бушмелева. В числе используемых инструментов называется «Прозрачный блокчейн» от Росфинмониторинга (систему отслеживания криптовалютых транзакций).

За рубежом так же уделяют этому вопросу много внимания. Например, BANK OF AMERICA внедрил искусственный интеллект в процессинг платежей. Программное обеспечение High Radius позволяет направлять платежи автоматически определяя и идентифицируя плательщика, и получателя, которые могут быть отправлены отдельно. Эти данные используются для сверки точности платежа, чтобы в дальнейшем загрузить информацию в ERP — систему клиента.

Финансовый холдинг HSBC, базирующийся в Великобритании, является седьмым по величине банком в мире по размеру активов и занимает 88 место в списке Fortune Global 500 с доходом в 75 329 миллионов долларов. Он в свою очередь использует искусственный интеллект, чтобы вывести “отмывателей” денег на чистую воду (tech start-up, Ayasdi.). В этой же области Danske Bank в 2017 году начал разрабатывать совместно с корпорацией Teradata платформу, способную в режиме «online» выявлять случаи мошенничества с использованием технологий искусственного интеллекта.

Таким образом, использование методов интеллектуального анализа данных при проведении расчетных операций помогает решить ряд актуальных задач в финансовой сфере, связанных с активным ростом информационных технологий, скорости расчетных операций и деятельности мошенников. Так же в работе выделены характерные проблемы по применения данных методов анализа в связи с новизной применения. В данном направление уже есть и ведутся разработки как на отечественном рынке, так и за рубежом. В дальнейшем данная сфера будет только развиваться за счет растущей с каждым годом актуальности и важности для финансовых организаций.

Литература:

1. Forbes magazine: офиц. сайт URL: https://goo.su/bfekwb дата обращения: 11.05.2024). — Текст: электронный.

2. Центральный банк Российской Федерации: офиц. сайт. URL: https://goo.su/Pjpz2 дата обращения: 11.05.2024). — Текст: электронный.

3. СберБанк: офиц. сайт. URL: https://goo.su/9j9asP дата обращения: 12.05.2024). — Текст: электронный.

4. Суркова, А. А. Современные инструменты по выявлению подозрительных клиентов / А. А. Суркова, Д. В. Домашова // Угрозы и риски финансовой безопасности в контексте цифровой трансформации: Материалы VII Международной научно-практической конференции Международного сетевого института в сфере ПОД/ФТ, Москва, 24 ноября 2021 года. — Москва: Национальный исследовательский ядерный университет «МИФИ», 2021. — С. 656–662. — EDN RURDIA.

5. URL: https://goo.su/F1C8qS дата обращения: 12.05.2024). — Текст: электронный.

6. Sanction Scanner. How AI and Machine Learning Help Prevent Money Laundering? — [Электронный ресурс]. — URL: https://sanctionscanner.com/blog/how-ai-and-machine-learning-helpprevent-money-laundering-64 (Дата обращения 12.05.2024)

Основные термины (генерируются автоматически): интеллектуальный анализ данных, данные, операция, искусственный интеллект, AMERICA, BANK, ERP, HSBC, IDC, общий объем.


Похожие статьи

Использование методов интеллектуального анализа данных в процессе банковского кредитования: зарубежный и российский опыт

В статье представлено рассмотрение зарубежного и российского опыты использования методов интеллектуального анализа данных в процессе банковского кредитования.

Скоринговая модель Э. Альтмана для оценки кредитного риска заемщиков

В данной работе будет рассмотрена важность использования банком скоринговой модели для точной и своевременной оценки кредитного риска заемщиков. В частности, будет разобран метод, основанный на модели Э. Альтмана, и в заключении представлена авторска...

Систематизация практики российских банков по использованию методов интеллектуального анализа данных для инструмента снижения риска и информационной безопасности кредитных организаций

В статье рассматриваются технологии использования обработки больших данных в банковской сфере, которые помогают совершенствовать возможности в оценке финансовых рисков и помогают сократить расходы клиентов кредитных организаций. Статья посвящена анал...

Применение Data mining для поддержания конкурентоспособности организаций

В статье исследуются особенности технологии интеллектуального анализа данных, описываются управленческие задачи, в решении которых целесообразно использовать данную технологию. Уделено отдельное внимание использованию интеллектуального анализа данных...

Актуальность применения новаций в управлении рисками банковского потребительского кредитования

В статье рассматриваются примеры внедрения новаций в области современного риск-менеджмента, приводится зарубежная практика использования технологий в управлении рисками потребительского кредитования. Оцениваются преимущества и риски использования сов...

Использование российскими и зарубежными банками методов интеллектуального анализа данных при проведении валютных операций

Валютные операции являются ключевым элементом финансовой деятельности банков, обеспечивая возможность обмена одной валюты на другую и способствуя развитию международной торговли. В условиях постоянно меняющихся экономических условий и усиления конкур...

Искусственный интеллект и анализ больших данных в работе с банковскими картами

В статье рассмотрены методы и технологии применения искусственного интеллекта в банковской сфере. Проанализирована классификация банков в России, по степени применения искусственного интеллекта. Рассмотрены современные банковские платформы, которые о...

К вопросу об особенностях управления рисками в банковском факторинге

Целью данной работы является классификация рисков в факторинге и выявление методов управления ими. Проведено сравнение методов управления рисками при факторинге и при традиционном кредитовании. По результатам проведенного исследования сделан вывод об...

Применение информационных технологий в анализе эффективности инвестиционной деятельности

В статье автор сделан обзор основных программ для анализа эффективности инвестиционной деятельности.

Анализ информационных рисков в обеспечении экономической безопасности предприятия при интеграции с аналитическими оценками в системе СПАРК

В данной статье предлагается интеграция методов оценки информационных рисков с результатами скоринговых показателей для оценки экономической безопасности предприятия.

Похожие статьи

Использование методов интеллектуального анализа данных в процессе банковского кредитования: зарубежный и российский опыт

В статье представлено рассмотрение зарубежного и российского опыты использования методов интеллектуального анализа данных в процессе банковского кредитования.

Скоринговая модель Э. Альтмана для оценки кредитного риска заемщиков

В данной работе будет рассмотрена важность использования банком скоринговой модели для точной и своевременной оценки кредитного риска заемщиков. В частности, будет разобран метод, основанный на модели Э. Альтмана, и в заключении представлена авторска...

Систематизация практики российских банков по использованию методов интеллектуального анализа данных для инструмента снижения риска и информационной безопасности кредитных организаций

В статье рассматриваются технологии использования обработки больших данных в банковской сфере, которые помогают совершенствовать возможности в оценке финансовых рисков и помогают сократить расходы клиентов кредитных организаций. Статья посвящена анал...

Применение Data mining для поддержания конкурентоспособности организаций

В статье исследуются особенности технологии интеллектуального анализа данных, описываются управленческие задачи, в решении которых целесообразно использовать данную технологию. Уделено отдельное внимание использованию интеллектуального анализа данных...

Актуальность применения новаций в управлении рисками банковского потребительского кредитования

В статье рассматриваются примеры внедрения новаций в области современного риск-менеджмента, приводится зарубежная практика использования технологий в управлении рисками потребительского кредитования. Оцениваются преимущества и риски использования сов...

Использование российскими и зарубежными банками методов интеллектуального анализа данных при проведении валютных операций

Валютные операции являются ключевым элементом финансовой деятельности банков, обеспечивая возможность обмена одной валюты на другую и способствуя развитию международной торговли. В условиях постоянно меняющихся экономических условий и усиления конкур...

Искусственный интеллект и анализ больших данных в работе с банковскими картами

В статье рассмотрены методы и технологии применения искусственного интеллекта в банковской сфере. Проанализирована классификация банков в России, по степени применения искусственного интеллекта. Рассмотрены современные банковские платформы, которые о...

К вопросу об особенностях управления рисками в банковском факторинге

Целью данной работы является классификация рисков в факторинге и выявление методов управления ими. Проведено сравнение методов управления рисками при факторинге и при традиционном кредитовании. По результатам проведенного исследования сделан вывод об...

Применение информационных технологий в анализе эффективности инвестиционной деятельности

В статье автор сделан обзор основных программ для анализа эффективности инвестиционной деятельности.

Анализ информационных рисков в обеспечении экономической безопасности предприятия при интеграции с аналитическими оценками в системе СПАРК

В данной статье предлагается интеграция методов оценки информационных рисков с результатами скоринговых показателей для оценки экономической безопасности предприятия.

Задать вопрос